Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features

卷积神经网络 计算机科学 人工智能 像素 深度学习 过程(计算) 噪音(视频) 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Song Wei-dong,Guohui Jia,Hong Zhu,Di Jia,Lin Gao
出处
期刊:Journal of Advanced Transportation [Hindawi Publishing Corporation]
卷期号:2020: 1-11 被引量:101
标识
DOI:10.1155/2020/6412562
摘要

Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F-score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xlj730227完成签到 ,获得积分10
1秒前
你要学好完成签到 ,获得积分10
2秒前
直率书包完成签到,获得积分10
2秒前
八卦巧克力完成签到,获得积分10
4秒前
WFLLL发布了新的文献求助10
6秒前
哈哈发布了新的文献求助10
6秒前
顾矜应助福桃采纳,获得10
7秒前
Zziiixl完成签到,获得积分10
9秒前
欢喜小蚂蚁完成签到 ,获得积分10
11秒前
海城好人完成签到,获得积分10
12秒前
彭于晏应助mao采纳,获得10
12秒前
14秒前
0713完成签到,获得积分10
17秒前
19秒前
期待未来的自己应助yy采纳,获得10
20秒前
21秒前
Ava应助忧郁嚣采纳,获得10
24秒前
kunkun应助含蓄小小采纳,获得30
25秒前
sasa完成签到 ,获得积分10
25秒前
苏苏苏发布了新的文献求助10
26秒前
小马甲应助tom81882采纳,获得10
28秒前
WFLLL发布了新的文献求助10
30秒前
lzl008完成签到 ,获得积分10
30秒前
ding应助魔幻的紫霜采纳,获得10
30秒前
31秒前
朴实雨竹完成签到,获得积分10
32秒前
32秒前
szz完成签到,获得积分10
32秒前
32秒前
水水发布了新的文献求助10
32秒前
NexusExplorer应助个性湘采纳,获得10
32秒前
33秒前
33秒前
zj发布了新的文献求助10
34秒前
35秒前
wanci应助苏苏苏采纳,获得10
35秒前
科研通AI2S应助yy采纳,获得10
36秒前
忧郁嚣发布了新的文献求助10
36秒前
魔幻的紫霜完成签到,获得积分10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845754
求助须知:如何正确求助?哪些是违规求助? 3388139
关于积分的说明 10551814
捐赠科研通 3108775
什么是DOI,文献DOI怎么找? 1713076
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774908