Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning

模式识别(心理学)
作者
Ruihai Wang,Pengming Song,Shaowei Jiang,Chenggang Yan,Jiakai Zhu,Chengfei Guo,Zichao Bian,Tianbo Wang,Guoan Zheng
出处
期刊:arXiv: Image and Video Processing
标识
DOI:10.1364/ol.400244
摘要

Fourier ptychographic microscopy (FPM) is a computational approach geared towards creating high-resolution and large field-of-view images without mechanical scanning. To acquire color images of histology slides, it often requires sequential acquisitions with red, green, and blue illuminations. The color reconstructions often suffer from coherent artifacts that are not presented in regular incoherent microscopy images. As a result, it remains a challenge to employ FPM for digital pathology applications, where resolution and color accuracy are of critical importance. Here we report a deep learning approach for performing unsupervised image-to-image translation of FPM reconstructions. A cycle-consistent adversarial network with multiscale structure similarity loss is trained to perform virtual brightfield and fluorescence staining of the recovered FPM images. In the training stage, we feed the network with two sets of unpaired images: 1) monochromatic FPM recovery, and 2) color or fluorescence images captured using a regular microscope. In the inference stage, the network takes the FPM input and outputs a virtually stained image with reduced coherent artifacts and improved image quality. We test the approach on various samples with different staining protocols. High-quality color and fluorescence reconstructions validate its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaolu发布了新的文献求助10
1秒前
吕文晴发布了新的文献求助10
1秒前
秀琴发布了新的文献求助50
1秒前
WANGCHU发布了新的文献求助10
1秒前
2秒前
dudududu完成签到,获得积分10
2秒前
3秒前
桐桐应助lisier采纳,获得10
3秒前
silin完成签到,获得积分10
3秒前
爆米花应助何何采纳,获得10
4秒前
JamesPei应助kai采纳,获得10
4秒前
guozizi发布了新的文献求助10
5秒前
Dita完成签到,获得积分10
5秒前
5秒前
6秒前
研友_MLJmo8发布了新的文献求助10
6秒前
WANGCHU完成签到,获得积分20
7秒前
幸福广山发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
英俊的铭应助鹬鸱采纳,获得10
11秒前
Zhuxiaole发布了新的文献求助10
12秒前
在吃饭的时候吃饭完成签到,获得积分10
12秒前
领导范儿应助lu采纳,获得10
13秒前
13秒前
猪猪hero发布了新的文献求助10
13秒前
Calvin-funsom完成签到,获得积分10
13秒前
Akim应助Alice采纳,获得10
14秒前
诗和远方发布了新的文献求助10
15秒前
15秒前
顾矜应助吕文晴采纳,获得10
15秒前
虚心夜山发布了新的文献求助10
15秒前
kai完成签到,获得积分20
15秒前
15秒前
李健应助绝望了采纳,获得10
16秒前
17秒前
17秒前
lisier发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831