多样性(控制论)
棕地
计算机科学
建筑
资产(计算机安全)
系统工程
体积热力学
分布式计算
工程类
实时计算
人工智能
再开发
计算机安全
土木工程
视觉艺术
艺术
物理
量子力学
作者
John Ahmet Erkoyuncu,Iñigo Fernández del Amo,Dedy Ariansyah,Dominik Bułka,Rok Vrabič,Rajkumar Roy
出处
期刊:CIRP Annals
[Elsevier BV]
日期:2020-01-01
卷期号:69 (1): 145-148
被引量:93
标识
DOI:10.1016/j.cirp.2020.04.086
摘要
Digital Twin (DT) is a ‘living’ entity that offers potential with monitoring and improving functionality of interconnected complex engineering systems (CESs). However, lack of approaches for adaptively connecting the existing brownfield systems and their data limits the use of DTs. This paper develops a new DT design framework that uses ontologies to enable co-evolution with the CES by capturing data in terms of variety, velocity, and volume across the asset life-cycle. The framework has been tested successfully on a helicopter gearbox demonstrator and a mobile robotic system across their life cycles, illustrating DT adaptiveness without the data architecture needing to be modified.
科研通智能强力驱动
Strongly Powered by AbleSci AI