Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma

医学 无线电技术 接收机工作特性 肾透明细胞癌 肾细胞癌 分级(工程) 随机森林 放射科 人工智能 特征(语言学) 核医学 医学影像学 计算机科学 病理 内科学 土木工程 哲学 工程类 语言学
作者
Hongyu Zhou,Haixia Mao,Di Dong,Mengjie Fang,Dongsheng Gu,Xueling Liu,Min Xu,Shudong Yang,Jian Zou,Ruohan Yin,Hairong Zheng,Jie Tian,Changjie Pan,Xiangming Fang
出处
期刊:Annals of Surgical Oncology [Springer Science+Business Media]
卷期号:27 (10): 4057-4065 被引量:25
标识
DOI:10.1245/s10434-020-08255-6
摘要

Nuclear grades of clear cell renal cell carcinoma (ccRCC) are usually confirmed by invasive methods. Radiomics is a quantitative tool that uses non-invasive medical imaging for tumor diagnosis and prognosis. In this study, a radiomics approach was proposed to analyze the association between preoperative computed tomography (CT) images and nuclear grades of ccRCC.Our dataset included 320 ccRCC patients from two centers and was divided into a training set (n = 124), an internal test set (n = 123), and an external test set (n = 73). A radiomic feature set was extracted from unenhanced, corticomedullary phase, and nephrographic phase CT images. The maximizing independent classification information criteria function and recursive feature elimination with cross-validation were used to select effective features. Random forests were used to build a final model for predicting nuclear grades, and area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of radiomic features and models.The radiomic features from the three CT phases could effectively distinguished the four nuclear grades. A combined model, merging radiomic features and clinical characteristics, obtained good predictive performances in the internal test set (AUC 0.77, 0.75, 0.79, and 0.85 for the four grades, respectively), and performance was further confirmed in the external test set, with AUCs of 0.75, 0.68, and 0.73 (no fourth-level data).The combination of CT radiomic features and clinical characteristics could discriminate the nuclear grades in ccRCC, which may help in assisting treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默夏真发布了新的文献求助30
1秒前
俭朴的一曲完成签到,获得积分10
2秒前
Akin完成签到,获得积分10
2秒前
zhou123432发布了新的文献求助10
2秒前
2秒前
所所应助njupt连赛通采纳,获得10
3秒前
鱼儿完成签到,获得积分10
5秒前
6秒前
xxxx完成签到 ,获得积分10
6秒前
8秒前
HNDuan完成签到,获得积分10
8秒前
9秒前
烟花应助晨雾锁阳采纳,获得10
9秒前
鸡鱼蚝完成签到,获得积分10
10秒前
隐形曼青应助冷静水蓝采纳,获得10
10秒前
10秒前
jenningseastera应助Akin采纳,获得10
11秒前
11秒前
11秒前
LuDans发布了新的文献求助20
12秒前
瀚泛完成签到,获得积分10
13秒前
13秒前
Lucas应助科研通管家采纳,获得10
14秒前
今后应助朝朝暮暮采纳,获得10
14秒前
Thien应助科研通管家采纳,获得10
14秒前
Thien应助科研通管家采纳,获得10
14秒前
一二发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
无限柠檬4519完成签到,获得积分10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
lz应助科研通管家采纳,获得30
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
zz应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435