Cytoplasmic movements of the early human embryo: imaging and artificial intelligence to predict blastocyst development

胚泡 胚胎 人工智能 人工神经网络 生物 男科 胚胎发生 计算机科学 细胞生物学 模式识别(心理学) 医学
作者
Giovanni Coticchio,Giulia Fiorentino,Giovanna Nicora,Raffaella Sciajno,Federica Cavalera,Riccardo Bellazzi,Silvia Garagna,Andrea Borini,Maurizio Zuccotti
出处
期刊:Reproductive Biomedicine Online [Elsevier BV]
卷期号:42 (3): 521-528 被引量:32
标识
DOI:10.1016/j.rbmo.2020.12.008
摘要

Abstract Research question Can artificial intelligence and advanced image analysis extract and harness novel information derived from cytoplasmic movements of the early human embryo to predict development to blastocyst? Design In a proof-of-principle study, 230 human preimplantation embryos were retrospectively assessed using an artificial neural network. After intracytoplasmic sperm injection, embryos underwent time-lapse monitoring for 44 h. For comparison, standard embryo assessment of each embryo by a single embryologist was carried out to predict development to blastocyst stage based on a single picture frame taken at 42 h of development. In the experimental approach, in embryos that developed to blastocyst or destined to arrest, cytoplasm movement velocity was recorded by time-lapse monitoring during the first 44 h of culture and analysed with a Particle Image Velocimetry algorithm to extract quantitative information. Three main artificial intelligence approaches, the k-Nearest Neighbour, the Long-Short Term Memory Neural Network and the hybrid ensemble classifier were used to classify the embryos. Results Blind operator assessment classified each embryo in terms of ability to develop to blastocyst, with 75.4% accuracy, 76.5% sensitivity, 74.3% specificity, 74.3% precision and 75.4% F1 score. Integration of results from artificial intelligence models with the blind operator classification, resulted in 82.6% accuracy, 79.4% sensitivity, 85.7% specificity, 84.4% precision and 81.8% F1 score. Conclusions The present study suggests the possibility of predicting human blastocyst development at early cleavage stages by detection of cytoplasm movement velocity and artificial intelligence analysis. This indicates the importance of the dynamics of the cytoplasm as a novel and valuable source of data to assess embryo viability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shinewei发布了新的文献求助10
2秒前
baoyin_hexige发布了新的文献求助100
2秒前
猴猴完成签到,获得积分10
2秒前
星辰发布了新的文献求助10
2秒前
言念君子发布了新的文献求助10
3秒前
3秒前
3秒前
杜阿拉阿拉完成签到,获得积分10
4秒前
有魅力哈密瓜完成签到,获得积分10
4秒前
甜蜜的映冬完成签到,获得积分20
5秒前
无聊的火龙果完成签到,获得积分10
6秒前
年轻的大炮完成签到,获得积分10
6秒前
高兴微笑完成签到,获得积分10
6秒前
lc完成签到,获得积分10
6秒前
7秒前
7秒前
月神满月完成签到,获得积分10
7秒前
xjtuwang0618完成签到,获得积分10
7秒前
7秒前
orixero应助Zzz采纳,获得10
8秒前
仅此而已完成签到,获得积分10
8秒前
zz完成签到 ,获得积分10
9秒前
tszjw168发布了新的文献求助200
9秒前
动听的雪卉完成签到,获得积分10
9秒前
ohh完成签到,获得积分10
10秒前
科研通AI5应助孤勇者采纳,获得10
10秒前
10秒前
11秒前
11秒前
攒星星发布了新的文献求助10
11秒前
12秒前
FSF完成签到,获得积分10
12秒前
12秒前
大模型应助加油干采纳,获得10
13秒前
清禾发布了新的文献求助30
14秒前
星辰完成签到,获得积分10
14秒前
I1waml完成签到 ,获得积分10
14秒前
Mine发布了新的文献求助10
14秒前
Turew应助ding采纳,获得10
15秒前
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383312
关于积分的说明 10529152
捐赠科研通 3103372
什么是DOI,文献DOI怎么找? 1709237
邀请新用户注册赠送积分活动 823008
科研通“疑难数据库(出版商)”最低求助积分说明 773764