Automatic segmentation of fish using deep learning with application to fish size measurement

计算机科学 分割 拖网捕鱼 人工智能 垂钓 计算机视觉 过度捕捞 图像分割 渔业 模式识别(心理学) 生物
作者
Rafael García,Ricard Prados,Josep Quintana,Alexander Tempelaar,Nuno Gracias,Shale Rosen,Håvard Vågstøl,Kristoffer Løvall
出处
期刊:Ices Journal of Marine Science [Oxford University Press]
卷期号:77 (4): 1354-1366 被引量:115
标识
DOI:10.1093/icesjms/fsz186
摘要

Abstract One of the leading causes of overfishing is the catch of unwanted fish and marine life in commercial fishing gears. Echosounders are nowadays routinely used to detect fish schools and make qualitative estimates of the amount of fish and species present. However, the problem of estimating sizes using acoustic systems is still largely unsolved, with only a few attempts at real-time operation and only at demonstration level. This paper proposes a novel image-based method for individual fish detection, targeted at drastically reducing catches of undersized fish in commercial trawling. The proposal is based on the processing of stereo images acquired by the Deep Vision imaging system, directly placed in the trawl. The images are pre-processed to correct for nonlinearities of the camera response. Then, a Mask R-CNN architecture is used to localize and segment each individual fish in the images. This segmentation is subsequently refined using local gradients to obtain an accurate estimate of the boundary of every fish. Testing was conducted with two representative datasets, containing in excess of 2600 manually annotated individual fish, and acquired using distinct artificial illumination setups. A distinctive advantage of this proposal is the ability to successfully deal with cluttered images containing overlapping fish.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
新八发布了新的文献求助10
刚刚
小二郎应助清脆的萍采纳,获得10
1秒前
wang应助SUHO采纳,获得10
1秒前
施耐德给sz的求助进行了留言
1秒前
李健的小迷弟应助小鱼头采纳,获得10
2秒前
睿智鱼仔发布了新的文献求助10
3秒前
FashionBoy应助慕慕倾采纳,获得10
3秒前
3秒前
婷安wst发布了新的文献求助10
4秒前
雨荷完成签到,获得积分10
4秒前
充电宝应助活泼的海豚采纳,获得10
4秒前
4秒前
crescent发布了新的文献求助30
5秒前
YD发布了新的文献求助150
5秒前
今后应助LC采纳,获得10
7秒前
8秒前
伯赏夏彤完成签到,获得积分10
8秒前
英俊的铭应助leoMD采纳,获得10
9秒前
Gery发布了新的文献求助10
9秒前
酷波er应助协和_子鱼采纳,获得10
10秒前
无语大王完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
water应助甜蜜水蜜桃采纳,获得10
13秒前
ChenJiahao发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助30
15秒前
sonny发布了新的文献求助10
15秒前
可乐不加冰完成签到,获得积分10
16秒前
16秒前
17秒前
panjunlu完成签到,获得积分10
17秒前
善学以致用应助Treasure98采纳,获得10
17秒前
lili发布了新的文献求助10
17秒前
17秒前
芳华如梦完成签到 ,获得积分10
18秒前
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870431
求助须知:如何正确求助?哪些是违规求助? 3412538
关于积分的说明 10680096
捐赠科研通 3137047
什么是DOI,文献DOI怎么找? 1730567
邀请新用户注册赠送积分活动 834086
科研通“疑难数据库(出版商)”最低求助积分说明 781072