惯性测量装置
全球定位系统
加速度
稳健性(进化)
传感器融合
估计员
计算机科学
车辆动力学
惯性导航系统
工程类
模拟
控制理论(社会学)
惯性参考系
汽车工程
人工智能
物理
控制(管理)
化学
量子力学
统计
基因
数学
生物化学
电信
经典力学
作者
Xiaolin Ding,Zhenpo Wang,Lei Zhang,Cong Wang
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2020-09-23
卷期号:69 (11): 12797-12806
被引量:130
标识
DOI:10.1109/tvt.2020.3026106
摘要
In this paper, an enabling multi-sensor fusion-based longitudinal vehicle speed estimator is proposed for four-wheel-independently-actuated electric vehicles using a Global Positioning System and Beidou Navigation Positioning (GPS-BD) module, and a low-cost Inertial Measurement Unit (IMU). For accurate vehicle speed estimation, an approach combing the wheel speed and the GPS-BD information is firstly put forward to compensate for the impact of road gradient on the output horizontal velocity of the GPS-BD module, and the longitudinal acceleration of the IMU. Then, a multi-sensor fusion-based longitudinal vehicle speed estimator is synthesized by employing three virtual sensors which generate three longitudinal vehicle speed tracks based on multiple sensor signals. Finally, the accuracy and reliability of the proposed longitudinal vehicle speed estimator are examined under a diverse range of driving conditions through hardware-in-the-loop tests. The results show that the proposed method has high estimation accuracy, robustness, and real-time performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI