A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data

代谢组学 生物 代谢组 代谢通量分析 计算生物学 通量平衡分析 代谢途径 代谢网络 杠杆(统计) 推论 背景(考古学) 数据集 人工智能 计算机科学 生物信息学 遗传学 基因 生物化学 古生物学 新陈代谢
作者
Norah Alghamdi,Wennan Chang,Pengtao Dang,Xiaoyu Lu,Changlin Wan,Silpa Gampala,Zhi Huang,Jiashi Wang,Qin Ma,Yong Zang,Melissa L. Fishel,Sha Cao,Chi Zhang
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:31 (10): 1867-1884 被引量:121
标识
DOI:10.1101/gr.271205.120
摘要

The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network–based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group–specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell–tissue and cell–cell metabolic communications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xin完成签到,获得积分10
2秒前
3秒前
lesyeuxdexx完成签到 ,获得积分10
4秒前
7秒前
高乐多发布了新的文献求助20
7秒前
钙钛矿柔性完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
Lijunjie发布了新的文献求助10
11秒前
韩雪蒙完成签到,获得积分10
12秒前
12秒前
13秒前
zho发布了新的文献求助10
14秒前
学术垃圾发布了新的文献求助10
14秒前
小鲸鱼发布了新的文献求助10
14秒前
sparks完成签到,获得积分10
16秒前
yangting发布了新的文献求助10
16秒前
wenlin发布了新的文献求助10
17秒前
sxs发布了新的文献求助10
17秒前
18秒前
传奇3应助罗是一采纳,获得10
18秒前
轻松小发布了新的文献求助10
18秒前
18秒前
20秒前
21秒前
23秒前
asdfghjkl完成签到,获得积分10
24秒前
yangting完成签到,获得积分20
25秒前
上官若男应助sxs采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
李健应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899546
求助须知:如何正确求助?哪些是违规求助? 3444196
关于积分的说明 10833711
捐赠科研通 3169083
什么是DOI,文献DOI怎么找? 1750938
邀请新用户注册赠送积分活动 846407
科研通“疑难数据库(出版商)”最低求助积分说明 789170