Constructing Quasi-Site-Specific Multivariate Probability Distribution Using Hierarchical Bayesian Model

多元统计 先验概率 贝叶斯概率 数据挖掘 计算机科学 人工智能 机器学习
作者
Jianye Ching,Stephen Wu,Kok‐Kwang Phoon
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (10) 被引量:49
标识
DOI:10.1061/(asce)em.1943-7889.0001964
摘要

In geotechnical engineering, it is challenging to construct a site-specific multivariate probability distribution model for soil/rock properties because the site-specific data are usually sparse and incomplete. In contrast, there are abundant generic soil/rock data in the literature for the construction of a generic multivariate probability distribution model, but this model is typically biased and/or imprecise for a specific site. A hybridization method has been proposed to combine these two sources of soil/rock data (site-specific data and a generic database) to produce a quasi-site-specific model, but this method is essentially heuristic. In the current paper, a more rational method that exploits the geologic origin of soil/rock data is proposed. There is a tendency for data to be more similar within a single site and less similar between sites. This is called site uniqueness in geotechnical engineering practice, but no data-driven methods exist to quantify this data feature currently. The hierarchical Bayesian model (HBM) is a natural model to exploit this group information. The grouping criterion can be site localization, soil/rock types, or others. This paper only studies the group criterion based on site localization. This means that a generic database is now viewed as a collection of data groups labeled by qualitative site labels. This site label does not contain any quantitative information such as GPS location, it merely demarcates each group as distinct. The novel contribution is the development of an efficient HBM with closed-form conditional probabilities based on suitably chosen conjugate priors that can handle multivariate, uncertain and unique, sparse, incomplete, and potentially corrupted (MUSIC) data containing site labels. Numerical comparisons between the hybridization method (which cannot incorporate group information) and HBM show that even the simple qualitative knowledge that data belong to a geographically constrained site can improve the estimation of soil/rock properties. The GPS location of each site is not needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
假榴粥完成签到,获得积分10
4秒前
hyp7347完成签到,获得积分20
5秒前
ddli发布了新的文献求助10
7秒前
在水一方应助涵泽采纳,获得10
7秒前
8秒前
科研通AI5应助Starry采纳,获得10
9秒前
pluto应助kkk采纳,获得20
9秒前
duxh123完成签到 ,获得积分10
12秒前
花卷发布了新的文献求助10
13秒前
jason完成签到,获得积分10
14秒前
Ander完成签到 ,获得积分10
14秒前
eiyuemiya发布了新的文献求助30
14秒前
15秒前
hyp7347发布了新的文献求助30
15秒前
背带裤打篮球完成签到,获得积分0
16秒前
16秒前
隐形曼青应助Assure采纳,获得10
16秒前
17秒前
19秒前
Zzkai发布了新的文献求助10
19秒前
20秒前
涵泽发布了新的文献求助10
20秒前
20秒前
dlut0407完成签到,获得积分10
22秒前
大泥鳅发布了新的文献求助10
24秒前
贝林7完成签到,获得积分10
25秒前
25秒前
小镇的废物完成签到,获得积分10
28秒前
29秒前
30秒前
rong发布了新的文献求助10
30秒前
彭于晏应助eiyuemiya采纳,获得10
32秒前
可爱的函函应助Pull采纳,获得10
32秒前
东风完成签到,获得积分10
33秒前
超帅曼柔完成签到,获得积分10
33秒前
Assure发布了新的文献求助10
34秒前
Starry发布了新的文献求助10
35秒前
田様应助大泥鳅采纳,获得10
35秒前
仁者无敌完成签到,获得积分10
38秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445