单层
激子
量子点
材料科学
光谱学
各向异性
飞秒
超快激光光谱学
分子物理学
凝聚态物理
光电子学
纳米技术
化学
物理
光学
量子力学
激光器
作者
Shuwen Zheng,Lei Wang,Hai‐Yu Wang,Chenyu Xu,Yang Luo,Hong‐Bo Sun
出处
期刊:Nanoscale
[Royal Society of Chemistry]
日期:2021-01-01
卷期号:13 (40): 17093-17100
被引量:12
摘要
Monolayer transition metal dichalcogenide quantum dots (TMDC QDs) could exhibit unique photophysical properties, because of both lateral quantum confinement effect and edge effect. However, there is little fundamental study on the quantum-confined exciton dynamics in monolayer TMDC QDs, to date. Here, by selective excitations of monolayer WS2 QDs in broadband transient absorption (TA) spectroscopy experiments, the excitation-wavelength-dependent ground state bleaching signals corresponding to the quantum-confined exciton states are directly observed. Compared to the time-resolved photophysical properties of WS2 nanosheets, the selected monolayer WS2 QDs only show one ground state bleaching peak with larger initial values for the linear polarization anisotropy of band-edge excitons, probably due to the expired spin-orbit coupling. This suggests a complete change of the band structure for monolayer WS2 QDs. In the femtosecond time-resolved circular polarization anisotropy experiments, a valley depolarization time of ∼100 fs is observed for WS2 nanosheets at room temperature, which is not observed for monolayer WS2 QDs. Our findings suggest a strong state-mixing of band-edge valley excitons responsible for the large linear polarization in monolayer WS2 QDs, which could be helpful for understanding the exciton relaxation mechanisms in colloidal monolayer TMDC QDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI