A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework

卷积神经网络 计算机科学 人工智能 稳健性(进化) 水稻 深度学习 水田 判别式 粮食安全 人口 机器学习 领域(数学) 叶斑病 模式识别(心理学) 农学 数学 生物 人口学 社会学 生态学 纯数学 农业 基因 生物化学
作者
Bifta Sama Bari,Md Nahidul Islam,Mamunur Rashid,Md Jahid Hasan,Mohd Azraai Mohd Razman,Rabiu Muazu Musa,Ahmad Fakhri Ab. Nasir,Anwar P. P. Abdul Majeed
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:7: e432-e432 被引量:222
标识
DOI:10.7717/peerj-cs.432
摘要

The rice leaves related diseases often pose threats to the sustainable production of rice affecting many farmers around the world. Early diagnosis and appropriate remedy of the rice leaf infection is crucial in facilitating healthy growth of the rice plants to ensure adequate supply and food security to the rapidly increasing population. Therefore, machine-driven disease diagnosis systems could mitigate the limitations of the conventional methods for leaf disease diagnosis techniques that is often time-consuming, inaccurate, and expensive. Nowadays, computer-assisted rice leaf disease diagnosis systems are becoming very popular. However, several limitations ranging from strong image backgrounds, vague symptoms' edge, dissimilarity in the image capturing weather, lack of real field rice leaf image data, variation in symptoms from the same infection, multiple infections producing similar symptoms, and lack of efficient real-time system mar the efficacy of the system and its usage. To mitigate the aforesaid problems, a faster region-based convolutional neural network (Faster R-CNN) was employed for the real-time detection of rice leaf diseases in the present research. The Faster R-CNN algorithm introduces advanced RPN architecture that addresses the object location very precisely to generate candidate regions. The robustness of the Faster R-CNN model is enhanced by training the model with publicly available online and own real-field rice leaf datasets. The proposed deep-learning-based approach was observed to be effective in the automatic diagnosis of three discriminative rice leaf diseases including rice blast, brown spot, and hispa with an accuracy of 98.09%, 98.85%, and 99.17% respectively. Moreover, the model was able to identify a healthy rice leaf with an accuracy of 99.25%. The results obtained herein demonstrated that the Faster R-CNN model offers a high-performing rice leaf infection identification system that could diagnose the most common rice diseases more precisely in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木雨亦潇潇完成签到,获得积分10
2秒前
ljz完成签到,获得积分10
3秒前
大大橙完成签到 ,获得积分10
4秒前
昏睡的沛柔完成签到 ,获得积分10
4秒前
饱满语风完成签到 ,获得积分10
9秒前
胡图图完成签到 ,获得积分10
10秒前
ljz发布了新的文献求助30
10秒前
samvega完成签到,获得积分10
13秒前
沉静皮带完成签到 ,获得积分10
13秒前
Kenzonvay完成签到,获得积分10
15秒前
啤酒人完成签到 ,获得积分10
18秒前
大个应助孙总采纳,获得10
20秒前
清爽的醉香完成签到 ,获得积分10
27秒前
Orange应助daladidala采纳,获得10
29秒前
白茶的雪完成签到,获得积分10
31秒前
孙总完成签到,获得积分10
33秒前
ellen完成签到,获得积分10
37秒前
39秒前
认真的问枫完成签到 ,获得积分10
41秒前
梦溪完成签到 ,获得积分10
41秒前
ethan2801完成签到,获得积分10
42秒前
daladidala发布了新的文献求助10
43秒前
娟儿完成签到 ,获得积分10
46秒前
Cynthia完成签到 ,获得积分10
46秒前
威武忆山完成签到 ,获得积分10
47秒前
yuntong完成签到 ,获得积分0
47秒前
ada完成签到,获得积分10
48秒前
hadfunsix完成签到 ,获得积分10
49秒前
松柏完成签到 ,获得积分10
49秒前
brian0326完成签到,获得积分10
49秒前
杨宁完成签到 ,获得积分10
59秒前
Lucas应助aiya采纳,获得10
1分钟前
1分钟前
王王完成签到 ,获得积分10
1分钟前
管靖易完成签到 ,获得积分10
1分钟前
邢夏之完成签到 ,获得积分10
1分钟前
1分钟前
CH发布了新的文献求助10
1分钟前
1分钟前
Littlerain~完成签到,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843295
求助须知:如何正确求助?哪些是违规求助? 3385613
关于积分的说明 10540874
捐赠科研通 3106195
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308