物理
光学
天线(收音机)
贝塞尔光束
角动量
贝塞尔函数
轴棱锥
全息术
电信
计算机科学
经典力学
激光器
激光束
作者
Xiangshuai Meng,Xiaoming Chen,Ruihai Chen,Haiying Li,Tan Qu,Anxue Zhang
标识
DOI:10.1103/physrevapplied.16.044063
摘要
Conventional multiple vortex beams carrying different orbital-angular-momentum (OAM) modes propagating in different directions suffer from beam divergences along with the increasing transmission distance, which greatly limits their practical applications. This article presents a diffraction-resisting dual high-order Bessel-beam (DHOBB) generator based on an anisotropic holographic impedance metasurface (AHIM) operating at 30 and 30.5 GHz. By virtue of leaky-wave theory and the optical holographic principle, surface waves excited by a monopole antenna welded on the back of the metasurface can be modulated into nondiffractive DHOBBs. Different geometric parameters of the subwavelength meta-atoms can be mapped by the interference patterns between the reference surface waves and the desired beams. Furthermore, this designed single-layer anisotropic metasurface can be equivalent to the functionalities of spiral-phase-plate, refractive-hyperbolic, and axicon lenses synthetically utilized in the popular air-fed metasurface to generate HOBBs. Compared with the most popular air-fed metasurface, this design results in predominant performances of ultralow profile, easy fabrication, and integration with other electronic components and avoids alignment errors. Both simulated and measured results demonstrate that nondiffractive DHOBBs carrying different OAM modes can be generated by this designed AHIM. Nondiffractive DHOBBs with different Bessel orders with distinctive properties may open a window for wireless communications with multiarea coverage and multitarget radar detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI