A large‐scale transcriptome‐wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine‐mapping

全基因组关联研究 遗传关联 生物 计算生物学 生命银行 多基因 数量性状位点 特质 表型 遗传学 转录组 表达数量性状基因座 基因 基因型 单核苷酸多态性 基因表达 计算机科学 程序设计语言
作者
Amanda L. Tapia,Bryce Rowland,Jonathan D. Rosen,Michael Preuss,Kris Young,Misa Graff,Hélène Choquet,David Couper,Steven Buyske,Stephanie A. Bien,Eric Jorgenson,Charles Kooperberg,Ruth J. F. Loos,Alanna C. Morrison,Kari E. North,Bing Yu,Alexander P. Reiner,Yun Li,Laura M. Raffield
出处
期刊:Genetic Epidemiology [Wiley]
卷期号:46 (1): 3-16 被引量:3
标识
DOI:10.1002/gepi.22436
摘要

Abstract Hematological measures are important intermediate clinical phenotypes for many acute and chronic diseases and are highly heritable. Although genome‐wide association studies (GWAS) have identified thousands of loci containing trait‐associated variants, the causal genes underlying these associations are often uncertain. To better understand the underlying genetic regulatory mechanisms, we performed a transcriptome‐wide association study (TWAS) to systematically investigate the association between genetically predicted gene expression and hematological measures in 54,542 Europeans from the Genetic Epidemiology Research on Aging cohort. We found 239 significant gene‐trait associations with hematological measures; we replicated 71 associations at p < 0.05 in a TWAS meta‐analysis consisting of up to 35,900 Europeans from the Women's Health Initiative, Atherosclerosis Risk in Communities Study, and BioMe Biobank. Additionally, we attempted to refine this list of candidate genes by performing conditional analyses, adjusting for individual variants previously associated with hematological measures, and performed further fine‐mapping of TWAS loci. To facilitate interpretation of our findings, we designed an R Shiny application to interactively visualize our TWAS results by integrating them with additional genetic data sources (GWAS, TWAS from multiple reference panels, conditional analyses, known GWAS variants, etc.). Our results and application highlight frequently overlooked TWAS challenges and illustrate the complexity of TWAS fine‐mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
懒洋洋发布了新的文献求助20
刚刚
刚刚
ch3oh完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
开心晓凡发布了新的文献求助10
2秒前
positive完成签到,获得积分20
2秒前
itsxm发布了新的文献求助10
2秒前
快乐美女发布了新的文献求助10
2秒前
重要小懒虫完成签到,获得积分10
3秒前
英俊的铭应助淡淡夕阳采纳,获得10
4秒前
4秒前
Hello应助不下雨采纳,获得10
4秒前
如意厉完成签到,获得积分10
4秒前
任志政完成签到 ,获得积分10
5秒前
5秒前
111关注了科研通微信公众号
6秒前
yy发布了新的文献求助10
6秒前
苹果发布了新的文献求助20
7秒前
曹7完成签到,获得积分20
7秒前
程莉完成签到,获得积分10
7秒前
7秒前
8秒前
赘婿应助高兴平灵采纳,获得10
8秒前
8秒前
9秒前
Xu完成签到,获得积分10
9秒前
ywhys发布了新的文献求助10
9秒前
fanhuam完成签到,获得积分10
10秒前
小小酥发布了新的文献求助10
10秒前
xuxu完成签到 ,获得积分10
10秒前
11秒前
12秒前
dzx完成签到,获得积分20
12秒前
云扶摇发布了新的文献求助10
12秒前
12秒前
慕青应助cheunsor采纳,获得10
12秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817624
求助须知:如何正确求助?哪些是违规求助? 3360911
关于积分的说明 10410260
捐赠科研通 3078989
什么是DOI,文献DOI怎么找? 1690938
邀请新用户注册赠送积分活动 814240
科研通“疑难数据库(出版商)”最低求助积分说明 768068