Integrating human knowledge into artificial intelligence for complex and ill-structured problems: Informed artificial intelligence

人工智能 计算机科学 构造(python库) 人工智能应用 领域(数学分析) 透明度(行为) 机器学习 领域知识 人类智力 知识管理 数据科学 数学 计算机安全 数学分析 程序设计语言
作者
Marina Johnson,Abdullah Albizri,Antoine Harfouche,Samuel Fosso Wamba
出处
期刊:International Journal of Information Management [Elsevier BV]
卷期号:64: 102479-102479 被引量:40
标识
DOI:10.1016/j.ijinfomgt.2022.102479
摘要

Artificial intelligence (AI) has been gaining significant attention in various fields to reduce costs, increase revenue, and improve customer satisfaction. AI can be particularly beneficial in enhancing decision-making processes for complex and ill-structured problems that lack transparency and have unclear goals. Most AI algorithms require labeled datasets to learn the problem characteristics, draw decision boundaries, and generalize. However, most datasets collected to solve complex and ill-structured problems do not have labels. Additionally, most AI algorithms are opaque and not easily interpretable, making it hard for decision-makers to obtain model insights for developing effective solution strategies. To this end, we examine existing AI paradigms, mainly symbolic AI (SAI) guided by human domain knowledge and data-driven AI (DAI) guided by data. We propose an approach called informed AI (IAI) by integrating human domain knowledge into AI to develop effective and reliable data labeling and model explainability processes. We demonstrate and validate the use of IAI by applying it to a social media dataset comprised of conversations between customers and customer support agents to construct a solution – IAI defect explorer (I-AIDE). I-AIDE is utilized to identify product defects and extract the voice of customers to help managers make decisions to improve quality and enhance customer satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助Sseven采纳,获得10
1秒前
Hello应助典雅的俊驰采纳,获得10
1秒前
赘婿应助好好读书采纳,获得10
1秒前
平常寒烟完成签到,获得积分10
2秒前
科研通AI6应助杰瑞采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
五仁月饼完成签到,获得积分10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
桐桐应助青夏采纳,获得10
4秒前
张菁完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
爆米花应助Ethan采纳,获得10
9秒前
chuzihang完成签到 ,获得积分10
10秒前
10秒前
10秒前
nkdailingyun发布了新的文献求助10
11秒前
sci_zt完成签到,获得积分10
11秒前
陶醉刺猬完成签到,获得积分10
13秒前
传奇3应助仲达采纳,获得10
13秒前
13秒前
小小马完成签到 ,获得积分10
13秒前
14秒前
思源应助lukejay采纳,获得10
14秒前
Jaywes完成签到,获得积分10
15秒前
16秒前
陶醉刺猬发布了新的文献求助10
16秒前
赘婿应助sci_zt采纳,获得10
18秒前
zzz完成签到,获得积分10
18秒前
凌兰完成签到 ,获得积分10
18秒前
共享精神应助科研狗采纳,获得10
18秒前
nkdailingyun完成签到,获得积分10
18秒前
心想柿橙发布了新的文献求助10
18秒前
liming完成签到,获得积分10
19秒前
Miracle发布了新的文献求助30
21秒前
妮可粒子完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807913
求助须知:如何正确求助?哪些是违规求助? 4122491
关于积分的说明 12754825
捐赠科研通 3857700
什么是DOI,文献DOI怎么找? 2123629
邀请新用户注册赠送积分活动 1145739
关于科研通互助平台的介绍 1038413