Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest)

医学 败血症 随机森林 机器学习 生存分析 梅德林 急诊医学 内科学 重症监护医学 法学 政治学 计算机科学
作者
Luming Zhang,Tao Huang,Fengshuo Xu,Shaojin Li,Shuai Zheng,Jun Lyu,Haiyan Yin
出处
期刊:BMC Emergency Medicine [BioMed Central]
卷期号:22 (1) 被引量:54
标识
DOI:10.1186/s12873-022-00582-z
摘要

Abstract Background Elderly patients with sepsis have many comorbidities, and the clinical reaction is not obvious. Thus, clinical treatment is difficult. We planned to use the laboratory test results and comorbidities of elderly patients with sepsis from a large-scale public database Medical Information Mart for Intensive Care (MIMIC) IV to build a random survival forest (RSF) model and to evaluate the model’s predictive value for these patients. Methods Clinical information of elderly patients with sepsis in MIMIC IV database was collected retrospectively. Machine learning (RSF) was used to select the top 30 variables in the training cohort to build the final RSF model. The model was compared with the traditional scoring systems SOFA, SAPSII, and APSIII. The performance of the model was evaluated by C index and calibration curve. Results A total of 6,503 patients were enrolled in the study. The top 30 important variables screened by RSF were used to construct the final RSF model. The new model provided a better C-index (0.731 in the validation cohort). The calibration curve described the agreement between the predicted probability of RSF model and the observed 30-day survival. Conclusions We constructed a prognostic model to predict a 30-day mortality risk in elderly patients with sepsis based on machine learning (RSF algorithm), and it proved superior to the traditional scoring systems. The risk factors affecting the patients were also ranked. In addition to the common risk factors of vasopressors, ventilator use, and urine output. Newly added factors such as RDW, type of ICU unit, malignant cancer, and metastatic solid tumor also significantly influence prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林谷雨完成签到 ,获得积分10
刚刚
pawpaw009完成签到,获得积分10
1秒前
无花果应助tesla采纳,获得10
2秒前
zr完成签到,获得积分10
2秒前
keyan完成签到,获得积分10
4秒前
犹豫的怀蝶完成签到,获得积分10
4秒前
鞠晓蕾发布了新的文献求助10
5秒前
愉快的白桃完成签到,获得积分10
5秒前
6秒前
科目三应助nunu采纳,获得10
7秒前
bzc229完成签到,获得积分10
7秒前
大曼曼曼曼完成签到,获得积分10
8秒前
夜雨诗意完成签到,获得积分10
8秒前
Salamenda完成签到,获得积分10
8秒前
激动的访文完成签到,获得积分10
9秒前
yuanzheng发布了新的文献求助10
10秒前
开始完成签到,获得积分10
11秒前
自信的网络完成签到 ,获得积分10
11秒前
寂静完成签到 ,获得积分10
13秒前
虚幻的香彤完成签到,获得积分10
13秒前
彪壮的绮烟完成签到,获得积分10
16秒前
诺亚方舟哇哈哈完成签到 ,获得积分10
16秒前
小烦同学完成签到,获得积分10
19秒前
gzzhao完成签到 ,获得积分10
20秒前
20秒前
淡定草丛完成签到 ,获得积分10
20秒前
和谐曼凝完成签到 ,获得积分10
20秒前
炮仗完成签到 ,获得积分10
20秒前
GAW完成签到,获得积分10
21秒前
温暖大米完成签到 ,获得积分10
22秒前
小熊完成签到,获得积分10
23秒前
yuanzheng完成签到,获得积分10
23秒前
iuhgnor完成签到,获得积分10
26秒前
nunu发布了新的文献求助10
26秒前
耕牛热完成签到,获得积分10
26秒前
当归完成签到,获得积分10
30秒前
hero_ljw完成签到,获得积分10
33秒前
34秒前
John完成签到,获得积分10
36秒前
sddq完成签到,获得积分10
36秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811789
求助须知:如何正确求助?哪些是违规求助? 3356092
关于积分的说明 10379425
捐赠科研通 3073158
什么是DOI,文献DOI怎么找? 1688205
邀请新用户注册赠送积分活动 811866
科研通“疑难数据库(出版商)”最低求助积分说明 766893