Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning

微塑料 人工智能 分割 模式识别(心理学) 计算机科学 环境科学 计算机视觉 生物系统 化学 环境化学 生物
作者
Bin Shi,Medhavi Patel,Dian Yu,Jihui Yan,Zhengyu Li,David Petriw,Thomas Michael Pruyn,Kelsey Smyth,Elodie Passeport,R. J. Dwayne Miller,Jane Y. Howe
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:825: 153903-153903 被引量:93
标识
DOI:10.1016/j.scitotenv.2022.153903
摘要

Microplastics quantification and classification are demanding jobs to monitor microplastic pollution and evaluate the potential health risks. In this paper, microplastics from daily supplies in diverse chemical compositions and shapes are imaged by scanning electron microscopy. It offers a greater depth and finer details of microplastics at a wider range of magnification than visible light microscopy or a digital camera, and permits further chemical composition analysis. However, it is labour-intensive to manually extract microplastics from micrographs, especially for small particles and thin fibres. A deep learning approach facilitates microplastics quantification and classification with a manually annotated dataset including 237 micrographs of microplastic particles (fragments or beads) in the range of 50 μm-1 mm and fibres with diameters around 10 μm. For microplastics quantification, two deep learning models (U-Net and MultiResUNet) were implemented for semantic segmentation. Both significantly outmatched conventional computer vision techniques and achieved a high average Jaccard index over 0.75. Especially, U-Net was combined with object-aware pixel embedding to perform instance segmentation on densely packed and tangled fibres for further quantification. For shape classification, a fine-tuned VGG16 neural network classifies microplastics based on their shapes with high accuracy of 98.33%. With trained models, it takes only seconds to segment and classify a new micrograph in high accuracy, which is remarkably cheaper and faster than manual labour. The growing datasets may benefit the identification and quantification of microplastics in environmental samples in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐梦松完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
4秒前
5秒前
Lee完成签到,获得积分10
5秒前
小海狸发布了新的文献求助10
6秒前
6秒前
高兴的蜻蜓完成签到,获得积分10
7秒前
bigchui应助jtyt采纳,获得20
7秒前
7秒前
顾矜应助ureil采纳,获得10
8秒前
Vc发布了新的文献求助10
8秒前
yyc发布了新的文献求助30
8秒前
Yey完成签到,获得积分10
8秒前
辣小扬发布了新的文献求助10
8秒前
9秒前
9秒前
dnliu完成签到,获得积分10
10秒前
无心发布了新的文献求助10
10秒前
完美世界应助炙热初晴采纳,获得10
11秒前
伊雪儿发布了新的文献求助10
11秒前
呆萌千凝发布了新的文献求助10
12秒前
dnliu发布了新的文献求助10
13秒前
汉堡包应助小海狸采纳,获得10
15秒前
15秒前
加油少年发布了新的文献求助10
15秒前
16秒前
华仔应助嘿嘿嘿采纳,获得10
19秒前
CodeCraft应助DukeAn809采纳,获得30
19秒前
20秒前
bkagyin应助王新新采纳,获得10
21秒前
风中的梨愁完成签到 ,获得积分10
21秒前
21秒前
OO发布了新的文献求助10
22秒前
wxr发布了新的文献求助10
22秒前
小二郎应助呆萌千凝采纳,获得10
22秒前
燚龘完成签到 ,获得积分10
23秒前
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4083806
求助须知:如何正确求助?哪些是违规求助? 3622958
关于积分的说明 11493357
捐赠科研通 3337651
什么是DOI,文献DOI怎么找? 1834945
邀请新用户注册赠送积分活动 903604
科研通“疑难数据库(出版商)”最低求助积分说明 821745