Machine learning enhanced electrical impedance tomography for 2D materials

电阻抗断层成像 解算器 反问题 Python(编程语言) 算法 卷积神经网络 反向 断层摄影术 计算机科学 边值问题 人工智能 数学 物理 数学分析 数学优化 几何学 光学 操作系统
作者
Adam Coxson,Ivo S. Mihov,Ziwei Wang,Vasil Avramov,Frederik Brooke Barnes,Sergey Slizovskiy,Ciaran Mullan,Ivan Timokhin,D.C.W. Sanderson,Andrey V. Kretinin,Qian Yang,William Lionheart,Artem Mishchenko
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:38 (8): 085007-085007 被引量:19
标识
DOI:10.1088/1361-6420/ac7743
摘要

Abstract Electrical impedance tomography (EIT) is a non-invasive imaging technique that reconstructs the interior conductivity distribution of samples from a set of voltage measurements performed on the sample boundary. EIT reconstruction is a non-linear and ill-posed inverse problem. Consequently, the non-linearity results in a high computational cost of solution, while regularisation and the most informative measurements must be used to overcome ill-posedness. To build the foundation of future research into EIT applications for 2D materials, such as graphene, we designed and implemented a novel approach to measurement optimisation via a machine learning adaptive electrode selection algorithm (A-ESA). Furthermore, we modified the forward solver of a python-based EIT simulation software, pyEIT, to include the complete electrode model (CEM) and employed it on 2D square samples (Liu B et al 2018 SoftwareX 7 304–8; Somersalo E et al 1992 SIAM J. Appl. Math. 52 1023–40). In addition, the deep D-Bar U-Net convolutional neural network architecture was applied to post-process conductivity map reconstructions from the GREIT algorithm (Hamilton and Hauptmann 2018 IEEE Trans. Med. Imaging 37 2367–77; Adler et al 2009 Physiol. Meas. 30 S35). The A-ESA offered around 20% lower reconstruction losses in fewer measurements than the standard opposite–adjacent electrode selection algorithm, on both simulated data and when applied to a real graphene-based device. The CEM enhanced forward solver achieved a 3% lower loss compared to the original pyEIT forward model. Finally, an experimental evaluation was performed on a graphene laminate film. Overall, this work demonstrates how EIT could be applied to 2D materials and highlights the utility of machine learning in both the experimental and analytical aspects of EIT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆aa完成签到 ,获得积分10
刚刚
今后应助正直千兰采纳,获得10
1秒前
1秒前
小二郎应助ZSH采纳,获得10
1秒前
zhiren完成签到 ,获得积分10
2秒前
小谭完成签到 ,获得积分10
2秒前
ybma完成签到 ,获得积分10
3秒前
nczpf2010完成签到,获得积分10
3秒前
mouxq发布了新的文献求助10
3秒前
yuliuism应助理科生采纳,获得10
3秒前
yuliuism应助理科生采纳,获得10
3秒前
充电宝应助理科生采纳,获得10
3秒前
4秒前
英俊的铭应助哭泣忆文采纳,获得10
4秒前
Ava应助咕噜_任采纳,获得10
5秒前
FlaKe完成签到,获得积分10
7秒前
clamon完成签到,获得积分10
7秒前
lll完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
Zx_1993应助学霸宇大王采纳,获得20
9秒前
10秒前
10秒前
11秒前
12秒前
跳跃乘风发布了新的文献求助10
12秒前
星辰大海应助zzy采纳,获得10
12秒前
正直千兰完成签到,获得积分10
12秒前
berg发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
慕青应助负责的问雁采纳,获得10
13秒前
14秒前
桐桐应助孤独尔安采纳,获得10
14秒前
14秒前
正直千兰发布了新的文献求助10
15秒前
的y应助yu采纳,获得10
15秒前
Nov发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547761
求助须知:如何正确求助?哪些是违规求助? 4633216
关于积分的说明 14629838
捐赠科研通 4574723
什么是DOI,文献DOI怎么找? 2508550
邀请新用户注册赠送积分活动 1484961
关于科研通互助平台的介绍 1456029