Deep learning techniques for liver and liver tumor segmentation: A review

深度学习 分割 人工智能 计算机科学 Sørensen–骰子系数 图像分割 图像处理 任务(项目管理) 模式识别(心理学) 掷骰子 计算机视觉 图像(数学) 数学 几何学 经济 管理
作者
Sidra Gul,Muhammad Salman Khan,Asima Bibi,Amith Khandakar,Mohamed Arselene Ayari,Muhammad E. H. Chowdhury
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:147: 105620-105620 被引量:96
标识
DOI:10.1016/j.compbiomed.2022.105620
摘要

Liver and liver tumor segmentation from 3D volumetric images has been an active research area in the medical image processing domain for the last few decades. The existence of other organs such as the heart, spleen, stomach, and kidneys complicate liver segmentation and tumor identification task since these organs share identical properties in terms of shape, texture, and intensity values. Many automatic and semi-automatic techniques have been presented in recent years, in an attempt to establish a system for the reliable diagnosis and detection of liver illnesses, specifically liver tumors. With the evolution of deep learning techniques and their exceptional performance in the field of medical image processing, medical image segmentation in volumetric images using deep learning techniques has received a great deal of emphasis. The goal of this study is to provide an overview of the available deep learning approaches for segmenting liver and detecting liver tumors, as well as their evaluation metrics including accuracy, volume overlap error, dice coefficient, and mean square distance. This research also includes a detailed overview of the various 3D volumetric imaging architectures, designed specifically for the task of semantic segmentation. The comparison of approaches offered in earlier challenges for liver and tumor segmentation, as well as their dice scores derived from respective site sources, is also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wbb完成签到 ,获得积分10
2秒前
赛韓吧完成签到 ,获得积分10
3秒前
6秒前
7秒前
健康的雁凡完成签到,获得积分10
7秒前
小写完成签到,获得积分10
9秒前
传奇完成签到 ,获得积分10
12秒前
小写发布了新的文献求助10
13秒前
研友_VZG7GZ应助meixinhu采纳,获得10
17秒前
平淡小丸子完成签到 ,获得积分10
21秒前
周涨杰完成签到 ,获得积分10
22秒前
24秒前
25秒前
听话的靖柏完成签到 ,获得积分10
26秒前
Xue完成签到,获得积分10
28秒前
落忆完成签到 ,获得积分10
30秒前
30秒前
meixinhu发布了新的文献求助10
35秒前
武狼帝完成签到 ,获得积分10
37秒前
ncuwzq发布了新的文献求助10
39秒前
mm完成签到 ,获得积分10
45秒前
庞初南完成签到,获得积分10
45秒前
医路有你完成签到,获得积分20
46秒前
可靠若云完成签到,获得积分10
46秒前
科研通AI5应助小写采纳,获得10
47秒前
48秒前
善学以致用应助jackone采纳,获得10
49秒前
KrisTina完成签到 ,获得积分10
50秒前
标致幻然完成签到 ,获得积分10
51秒前
小马甲应助稳重元蝶采纳,获得10
51秒前
机智的乌完成签到,获得积分10
51秒前
韶雁开完成签到,获得积分10
53秒前
ncuwzq完成签到,获得积分10
54秒前
54秒前
56秒前
57秒前
稳重元蝶发布了新的文献求助10
1分钟前
小西完成签到 ,获得积分10
1分钟前
Chase完成签到,获得积分10
1分钟前
lxlcx完成签到,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726