亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Recent Review of Risk-Based Inspection Development to Support Service Excellence in the Oil and Gas Industry: An Artificial Intelligence Perspective

计算机科学 聚类分析 支持向量机 人工智能 风险分析(工程) 机器学习 医学
作者
Taufik Aditiyawarman,Agus Paul Setiawan Kaban,Johny Wahyuadi Soedarsono
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASM International]
卷期号:9 (1) 被引量:20
标识
DOI:10.1115/1.4054558
摘要

Abstract Inspection and Maintenance methods development have a pivotal role in preventing the uncertainty-induced risks in the oil and gas industry. A key aspect of inspection is evaluating the risk of equipment from the scheduled and monitored assessment in the dynamic system. This activity includes assessing the modification factor's probability of failure and calculating the equipment's remaining useful life (RUL). The traditional inspection model constitutes a partial solution to grouping the vast amount of real-data inspection and observations at equal intervals. This literature review aims to offer a comprehensive review concerning the benefit of machine learning in managing the risk while incorporating time-series forecasting studies and an overview of risk-based inspection methods (e.g., quantitative, semiquantitative, and qualitative). A literature review with a deductive approach is used to discuss the improvement of the clustering Gaussian mixture model to overcome the noncircular shape data that may show in the K-Means models. Machine learning classifiers such as Decision Trees, Logistic Regression, Support Vector Machines, K-nearest neighbors, and Random Forests were selected to provide a platform for risk assessment and give a promising prediction toward the actual condition and the severity level of equipment. This work approaches complementary tools and grows interest in embedded artificial intelligence in Risk Management systems and can be used as the basis of more robust guidance to organize complexity in handling inspection data, but further and future research is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zm完成签到 ,获得积分10
12秒前
热情的橙汁完成签到,获得积分10
25秒前
28秒前
ZHEN发布了新的文献求助10
34秒前
馆长举报byby求助涉嫌违规
36秒前
李健应助ZHEN采纳,获得10
40秒前
靓丽的熠彤完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
千里草完成签到,获得积分10
2分钟前
kidd瑞完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
wangyf完成签到,获得积分10
2分钟前
Sylvie发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
Swear完成签到 ,获得积分10
3分钟前
ywzwszl完成签到,获得积分0
3分钟前
Re完成签到 ,获得积分10
4分钟前
馆长举报平常的若雁求助涉嫌违规
4分钟前
量子星尘发布了新的文献求助10
4分钟前
馆长应助祥子采纳,获得30
4分钟前
zlx完成签到 ,获得积分10
4分钟前
Allen0520完成签到,获得积分10
4分钟前
4分钟前
hnxxangel完成签到,获得积分10
4分钟前
胡豆发布了新的文献求助10
5分钟前
胡豆完成签到,获得积分10
5分钟前
馆长举报Godspeed求助涉嫌违规
5分钟前
leaolf应助白华苍松采纳,获得20
5分钟前
5分钟前
忧伤的绍辉完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834409
求助须知:如何正确求助?哪些是违规求助? 4138281
关于积分的说明 12808243
捐赠科研通 3882014
什么是DOI,文献DOI怎么找? 2134977
邀请新用户注册赠送积分活动 1155023
关于科研通互助平台的介绍 1054202