Prediction method for void content of aggregate based on neural network model

人工神经网络 稳健性(进化) 计算机科学 近似误差 交错 相关系数 骨料(复合) 空隙(复合材料) 算法 人工智能 机器学习 材料科学 生物化学 基因 复合材料 化学
作者
Huaiying Fang,Wenhua Lin,Jianhong Yang,Hejun Zhu,Weiduan Lin
出处
期刊:Particulate Science and Technology [Taylor & Francis]
卷期号:40 (1): 74-83 被引量:1
标识
DOI:10.1080/02726351.2021.1917738
摘要

The void content of aggregates (VCoA) considerably influences the mechanical response of asphalt concrete; the rapid prediction of VCoA can aid in designing high-performance concrete. To predict VCoA, the size and shape parameters of aggregate particles are measured using image analysis processing, and the results are used as inputs in a neural network model. Void content data is non-linear and interlacing; therefore, the Elman and back propagation neural networks are used to predict VCoA owing to their non-linear mapping abilities. The correlation coefficient in the data set and maximum prediction error are used to compare the robustness of the two models. Results indicate that the Elman neural network model can obtain a low prediction error and stronger correlation between predicted and simulated values when choosing the appropriate number of hidden layer nodes. Considering complex shapes of practical aggregates, the predicted VCoA using the Elman neural network model was corrected and verified via experiments; the results show that the error between the predicted VCoA after the correction and the actual VCoA is within 1%, which meets the accuracy requirements of engineering application. Thus, combining imaging technology and the neural network is an effective approach to predict VCoA.HIGHLIGHTSVoid content can be predicted by the particle size and particle morphological parameters and the deviation between the predictive value and the true value was within 1%.The rapid prediction model of void content based on the Elman neural network was established.EDEM simulation software was used to construct abnormally-shaped aggregate particles and to carry out void content simulation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
02的秋天发布了新的文献求助10
刚刚
踏实的求真完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
庄小因发布了新的文献求助10
1秒前
椰子发布了新的文献求助10
1秒前
lucky发布了新的文献求助10
1秒前
春樹暮雲完成签到 ,获得积分10
1秒前
2秒前
林大侠完成签到,获得积分10
2秒前
2秒前
杰瑞院士完成签到,获得积分10
2秒前
freeflyzt发布了新的文献求助10
2秒前
wawuuuuu完成签到,获得积分10
2秒前
欣慰的盼芙完成签到 ,获得积分10
3秒前
3秒前
4秒前
伊斯坦堡的喵完成签到,获得积分10
4秒前
忆南完成签到 ,获得积分10
4秒前
4秒前
5秒前
甫文完成签到 ,获得积分10
5秒前
满意的天完成签到 ,获得积分10
5秒前
唐鑫完成签到,获得积分10
5秒前
坦率的棉花糖完成签到,获得积分10
5秒前
Ava应助风中画板采纳,获得10
6秒前
深情安青应助liii采纳,获得10
6秒前
xfy完成签到,获得积分10
6秒前
卓若之完成签到 ,获得积分10
6秒前
天天快乐应助高强采纳,获得10
7秒前
乔垣结衣应助宣宣采纳,获得20
7秒前
老实寒云发布了新的文献求助10
7秒前
liu发布了新的文献求助10
7秒前
7秒前
8秒前
吴世勋发布了新的文献求助10
9秒前
cai发布了新的文献求助10
9秒前
CipherSage应助TIPHA采纳,获得10
9秒前
柒柒完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5163706
求助须知:如何正确求助?哪些是违规求助? 4356570
关于积分的说明 13563513
捐赠科研通 4201930
什么是DOI,文献DOI怎么找? 2304612
邀请新用户注册赠送积分活动 1304423
关于科研通互助平台的介绍 1250935