Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷艳晓丝完成签到,获得积分10
1秒前
1秒前
2秒前
满意宛筠发布了新的文献求助10
2秒前
成事在人307完成签到,获得积分10
3秒前
Echo发布了新的文献求助10
3秒前
科研通AI2S应助mogen采纳,获得10
3秒前
orixero应助科研小白采纳,获得10
4秒前
4秒前
5秒前
5秒前
哦啦啦发布了新的文献求助10
8秒前
10秒前
12秒前
77发布了新的文献求助10
12秒前
烟花应助carrieschen采纳,获得10
13秒前
13秒前
一枪入魂完成签到,获得积分10
16秒前
薅住科研的头发完成签到,获得积分10
16秒前
哦啦啦完成签到,获得积分10
17秒前
科研小白发布了新的文献求助10
17秒前
温暖发布了新的文献求助10
18秒前
暗语完成签到,获得积分20
19秒前
20秒前
21秒前
小马甲应助江宿采纳,获得10
22秒前
22秒前
赘婿应助墨尔根戴青采纳,获得10
22秒前
23秒前
mogen完成签到,获得积分10
24秒前
科研小白完成签到,获得积分10
24秒前
甜蜜的曼冬完成签到 ,获得积分10
25秒前
科研通AI5应助Chris小七采纳,获得10
25秒前
28秒前
wangrblzu应助玥越采纳,获得10
28秒前
29秒前
xiyue应助chenxiaolei采纳,获得10
29秒前
Morii1999完成签到,获得积分20
30秒前
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149