Informative knowledge distillation for image anomaly segmentation

过度拟合 计算机科学 人工智能 分割 背景(考古学) 机器学习 模式识别(心理学) 蒸馏 异常检测 相似性(几何) 人工神经网络 图像(数学) 生物 古生物学 有机化学 化学
作者
Yunkang Cao,Qian Wan,Weiming Shen,Liang Gao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:248: 108846-108846 被引量:74
标识
DOI:10.1016/j.knosys.2022.108846
摘要

Unsupervised anomaly segmentation methods based on knowledge distillation have recently been developed and have shown superior segmentation performance. However, little attention has been paid to the overfitting problem caused by the inconsistency between the capacity of a neural network and the amount of knowledge in this scheme. This study proposes a novel method called informative knowledge distillation (IKD) to address the overfitting problem by distilling informative knowledge and offering a strong supervisory signal. Technically, a novel context similarity loss method is proposed to capture context information from normal data manifolds. In addition, a novel adaptive hard sample mining method is proposed to encourage more attention on hard samples with valuable information. With IKD, informative knowledge can be distilled such that the overfitting problem can be effectively mitigated, and the performance can be further increased. The proposed method achieved better results on several categories of the well-known MVTec AD dataset than state-of-the-art methods in terms of AU-ROC, achieving 97.81% overall in 15 categories. Extensive experiments on ablation have also been conducted to demonstrate the effectiveness of IKD in alleviating the overfitting problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小十采纳,获得10
1秒前
彭于晏应助王手采纳,获得10
1秒前
乐乐应助张欢欢采纳,获得10
1秒前
1秒前
魔幻的采波完成签到,获得积分10
1秒前
充电宝应助ppsweek采纳,获得30
1秒前
2秒前
搞怪夜阑完成签到,获得积分20
2秒前
2秒前
ljw199606发布了新的文献求助10
3秒前
3秒前
4秒前
爱美丽应助乳酸菌采纳,获得10
4秒前
5秒前
禾女鬼关注了科研通微信公众号
5秒前
CodeCraft应助ddingk采纳,获得10
6秒前
小花花发布了新的文献求助10
6秒前
李爱国应助笨笨卡卡西采纳,获得30
6秒前
全力鸡发布了新的文献求助10
7秒前
无花果应助小杨采纳,获得10
7秒前
yanruyu发布了新的文献求助30
7秒前
解语花发布了新的文献求助10
7秒前
8秒前
hd发布了新的文献求助10
8秒前
8秒前
崽崽一号完成签到,获得积分10
9秒前
科研通AI6应助丹青采纳,获得10
9秒前
小马甲应助WY采纳,获得30
9秒前
隐形曼青应助笛九采纳,获得10
9秒前
Lily1983发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助50
11秒前
wuji完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI5应助代代代代采纳,获得10
12秒前
12秒前
领导范儿应助coldzer0采纳,获得10
13秒前
13秒前
小D发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072099
求助须知:如何正确求助?哪些是违规求助? 4292584
关于积分的说明 13375086
捐赠科研通 4113598
什么是DOI,文献DOI怎么找? 2252529
邀请新用户注册赠送积分活动 1257381
关于科研通互助平台的介绍 1190193