氧化应激
炎症
基因沉默
免疫学
脂多糖
丙二醛
肿瘤坏死因子α
细胞凋亡
谷胱甘肽过氧化物酶
超氧化物歧化酶
医学
化学
生物
内科学
生物化学
基因
作者
Yi Zhang,Liping Yan,Jiao Yang,Xiangni Li
摘要
Childhood asthma is a common chronic inflammatory lung disease in children, among which airway inflammation is the main driving factor of asthma symptoms. Follistatin-like protein 1 (FSTL1) is involved in multiple inflammatory processes, but its role in airway inflammation has not been fully elucidated.We used lipopolysaccharide (LPS) to stimulate human primary bronchial epithelial (BEAS-2B) cells to establish an in vitro airway inflammation model. The expression of FSTL1 was detected by qPCR. Cell Counting Kit-8 and Annexin V-PI double staining was used to analyze the viability and apoptosis of BEAS-2B. The content of IL-6, IL-8 and TNF-α was determined by ELISA kit. Western blot was used to detect the protein expression level of the bone morphogenetic protein 4 (BMP4) and KLF4. The levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde were measured to assess oxidative stress.The mRNA expression of FSTL1 was significantly increased in LPS-treated BEAS-2B cells. Silencing of FSTL1 inhibited the release of IL-6, IL-8, TNF-α, and cell apoptosis as well as enhanced the activities of SOD, CAT, and GSH-Px. Silencing of FSTL1 reversed the inflammatory state of cells by upregulating BMP4 and increasing the expression level of KLF4.Silencing of FSTL1 reduced LPS-induced BEAS-2B cell damage by regulating the BMP4/KLF4 axis. FSTL1 may be a potential target for the treatment of asthma.
科研通智能强力驱动
Strongly Powered by AbleSci AI