Wafer Defect Localization and Classification Using Deep Learning Techniques

薄脆饼 计算机科学 人工智能 过程(计算) 半导体器件制造 模式识别(心理学) 深度学习 根本原因 质量(理念) 数据挖掘 机器学习 可靠性工程 材料科学 工程类 纳米技术 哲学 操作系统 认识论
作者
Prashant P. Shinde,Priyadarshini P. Pai,Shashishekar P. Adiga
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 39969-39974 被引量:33
标识
DOI:10.1109/access.2022.3166512
摘要

Accurate detection and classification of wafer defects constitute an important component in semiconductor manufacturing. It provides interpretable information to find the possible root causes of defects and to take actions for quality management and yield improvement. Traditional approach to classify wafer defects, performed manually by experienced engineers using computer-aided tools, is time-consuming and can be low in accuracy. Hence, automated detection of wafer defects using deep learning approaches has attracted considerable attention to improve the performance of detection process. However, a majority of these works have focused on defect classification and have ignored defect localization which is equally important in determining how specific process steps can lead to defects in certain locations. To address this, we evaluate the state-of-the-art You Only Look Once (YOLO) architecture to accurately locate and classify wafer map defects. Experimental results obtained on 19200 wafer maps show that YOLOv3 and YOLOv4, the variants of YOLO architecture, can achieve >94% of classification accuracy in real-time. For comparison, other architectures, namely ResNet50 and DenseNet121 are also evaluated for wafer defect classification and they give accuracies 89% and 92% respectively, however, without localization abilities. We find that the object detection methods are very useful in locating and classifying defects on semiconductor wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
师大刘亦菲完成签到 ,获得积分10
1秒前
man完成签到 ,获得积分10
1秒前
vagabond完成签到 ,获得积分10
5秒前
DAI完成签到,获得积分10
7秒前
上官若男应助悦耳如彤采纳,获得10
8秒前
医生科学家完成签到 ,获得积分0
8秒前
Zz完成签到 ,获得积分10
9秒前
zhangpeng完成签到,获得积分10
9秒前
11秒前
粥粥完成签到,获得积分10
14秒前
15秒前
烦恼都走开完成签到,获得积分10
16秒前
刘翘铭发布了新的文献求助20
17秒前
雨辰完成签到,获得积分10
17秒前
朴实乐天发布了新的文献求助50
17秒前
19秒前
明天更好完成签到 ,获得积分10
20秒前
21秒前
LY发布了新的文献求助10
22秒前
艾达乳酪块完成签到,获得积分10
22秒前
安安完成签到 ,获得积分10
23秒前
zhangfuchao完成签到,获得积分10
23秒前
hhw完成签到,获得积分10
23秒前
自然怀梦完成签到,获得积分10
23秒前
悦耳如彤发布了新的文献求助10
26秒前
哈哈完成签到,获得积分10
26秒前
那些兔儿完成签到 ,获得积分0
31秒前
yy发布了新的文献求助10
33秒前
小马甲应助科研通管家采纳,获得10
34秒前
34秒前
gjx完成签到 ,获得积分10
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
Orange应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
李健应助科研通管家采纳,获得10
34秒前
SciGPT应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
35秒前
LL来了完成签到 ,获得积分10
35秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726