测试套件
差异进化
水准点(测量)
一套
人口
人口规模
趋同(经济学)
计算机科学
维数(图论)
数学优化
适应(眼睛)
算法
突变
数学
测试用例
机器学习
物理
生物
社会学
人口学
历史
经济增长
考古
光学
生物化学
回归分析
大地测量学
纯数学
经济
基因
地理
作者
Petr Bujok,Josef Tvrdík
标识
DOI:10.1109/cec.2017.7969462
摘要
A new variant of individual-dependent differential evolution (IDE) algorithm is proposed. The original IDE is enhanced by a new mutation strategy accelerating convergence in the last phase of the search. Moreover, the population size is adapted with respect to the diversity of the current population. The newly proposed IDEbd algorithm is applied to the benchmark suite for CEC 2017 competition on Single Objective Real-Parameter Numerical Optimization. Preliminary experiments showed better performance of IDEbd compared to the original IDE. The results achieved on the CEC 2017 test suite are also promising, especially in problems of lower dimension.
科研通智能强力驱动
Strongly Powered by AbleSci AI