相间
电解质
电极
材料科学
锂(药物)
电化学
纳米技术
图层(电子)
化学工程
化学
工程类
遗传学
医学
生物
内分泌学
物理化学
作者
Zhiqiang Zhu,Xiaodong Chen
出处
期刊:Nano Research
[Springer Nature]
日期:2017-08-19
卷期号:10 (12): 4115-4138
被引量:52
标识
DOI:10.1007/s12274-017-1647-7
摘要
The overall performance of lithium-ion batteries (LIBs) is closely related to the interphase between the electrode materials and electrolytes. During LIB operation, electrolytes may decompose on the surface of electrode materials, forming a solid electrolyte interphase (SEI) layer. Ideally, the SEI layer should ensure reversible lithium-ion intercalation in the electrodes and suppress interfacial interactions. However, the chemical and mechanical stabilities of the SEI layer are not usually able to meet these requirements. Alternatively, tremendous efforts have been devoted to engineering the surface of electrode materials with an artificial interphase, which shows great promise in improving the electrochemical performance. Herein, we present a comprehensive summary of the state-of-the-art knowledge on this topic. The effects of the artificial interphase on the electrochemical performance of the electrode materials are discussed in detail. In particular, we highlight the importance of three functions of artificial interphases, including inhibiting electrolyte decomposition, protecting the electrodes from corrosion, and accommodating electrode volume changes.
科研通智能强力驱动
Strongly Powered by AbleSci AI