清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks

医学 卷积神经网络 接收机工作特性 人工智能 射线照相术 预处理器 深度学习 放射科 肺结核 分类器(UML) 肺结核 模式识别(心理学) 计算机科学 病理 内科学
作者
Paras Lakhani,Baskaran Sundaram
出处
期刊:Radiology [Radiological Society of North America]
卷期号:284 (2): 574-582 被引量:1527
标识
DOI:10.1148/radiol.2017162326
摘要

Purpose To evaluate the efficacy of deep convolutional neural networks (DCNNs) for detecting tuberculosis (TB) on chest radiographs. Materials and Methods Four deidentified HIPAA-compliant datasets were used in this study that were exempted from review by the institutional review board, which consisted of 1007 posteroanterior chest radiographs. The datasets were split into training (68.0%), validation (17.1%), and test (14.9%). Two different DCNNs, AlexNet and GoogLeNet, were used to classify the images as having manifestations of pulmonary TB or as healthy. Both untrained and pretrained networks on ImageNet were used, and augmentation with multiple preprocessing techniques. Ensembles were performed on the best-performing algorithms. For cases where the classifiers were in disagreement, an independent board-certified cardiothoracic radiologist blindly interpreted the images to evaluate a potential radiologist-augmented workflow. Receiver operating characteristic curves and areas under the curve (AUCs) were used to assess model performance by using the DeLong method for statistical comparison of receiver operating characteristic curves. Results The best-performing classifier had an AUC of 0.99, which was an ensemble of the AlexNet and GoogLeNet DCNNs. The AUCs of the pretrained models were greater than that of the untrained models (P < .001). Augmenting the dataset further increased accuracy (P values for AlexNet and GoogLeNet were .03 and .02, respectively). The DCNNs had disagreement in 13 of the 150 test cases, which were blindly reviewed by a cardiothoracic radiologist, who correctly interpreted all 13 cases (100%). This radiologist-augmented approach resulted in a sensitivity of 97.3% and specificity 100%. Conclusion Deep learning with DCNNs can accurately classify TB at chest radiography with an AUC of 0.99. A radiologist-augmented approach for cases where there was disagreement among the classifiers further improved accuracy. © RSNA, 2017
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助50
1秒前
lilylian完成签到,获得积分10
2秒前
4秒前
注水萝卜完成签到 ,获得积分10
9秒前
9秒前
科奇应助科研通管家采纳,获得10
12秒前
14秒前
19秒前
24秒前
小蜻蜓完成签到,获得积分10
29秒前
30秒前
41秒前
林夕完成签到 ,获得积分10
41秒前
霍凡白完成签到,获得积分10
48秒前
53秒前
59秒前
重重重飞完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Waki完成签到 ,获得积分10
1分钟前
吗喽发布了新的文献求助10
1分钟前
珍珠火龙果完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
wayne完成签到 ,获得积分10
1分钟前
拼搏的羊青完成签到 ,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
在水一方应助玲玲采纳,获得10
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
2分钟前
大轩完成签到 ,获得积分10
2分钟前
小小鱼完成签到 ,获得积分10
3分钟前
庄海棠完成签到 ,获得积分10
3分钟前
xm完成签到 ,获得积分10
3分钟前
DHW1703701完成签到,获得积分10
3分钟前
氟锑酸完成签到 ,获得积分10
3分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099554
求助须知:如何正确求助?哪些是违规求助? 3637111
关于积分的说明 11525849
捐赠科研通 3346456
什么是DOI,文献DOI怎么找? 1839286
邀请新用户注册赠送积分活动 906504
科研通“疑难数据库(出版商)”最低求助积分说明 823836