Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks

医学 卷积神经网络 接收机工作特性 人工智能 射线照相术 预处理器 深度学习 放射科 肺结核 分类器(UML) 肺结核 模式识别(心理学) 计算机科学 病理 内科学
作者
Paras Lakhani,Baskaran Sundaram
出处
期刊:Radiology [Radiological Society of North America]
卷期号:284 (2): 574-582 被引量:1527
标识
DOI:10.1148/radiol.2017162326
摘要

Purpose To evaluate the efficacy of deep convolutional neural networks (DCNNs) for detecting tuberculosis (TB) on chest radiographs. Materials and Methods Four deidentified HIPAA-compliant datasets were used in this study that were exempted from review by the institutional review board, which consisted of 1007 posteroanterior chest radiographs. The datasets were split into training (68.0%), validation (17.1%), and test (14.9%). Two different DCNNs, AlexNet and GoogLeNet, were used to classify the images as having manifestations of pulmonary TB or as healthy. Both untrained and pretrained networks on ImageNet were used, and augmentation with multiple preprocessing techniques. Ensembles were performed on the best-performing algorithms. For cases where the classifiers were in disagreement, an independent board-certified cardiothoracic radiologist blindly interpreted the images to evaluate a potential radiologist-augmented workflow. Receiver operating characteristic curves and areas under the curve (AUCs) were used to assess model performance by using the DeLong method for statistical comparison of receiver operating characteristic curves. Results The best-performing classifier had an AUC of 0.99, which was an ensemble of the AlexNet and GoogLeNet DCNNs. The AUCs of the pretrained models were greater than that of the untrained models (P < .001). Augmenting the dataset further increased accuracy (P values for AlexNet and GoogLeNet were .03 and .02, respectively). The DCNNs had disagreement in 13 of the 150 test cases, which were blindly reviewed by a cardiothoracic radiologist, who correctly interpreted all 13 cases (100%). This radiologist-augmented approach resulted in a sensitivity of 97.3% and specificity 100%. Conclusion Deep learning with DCNNs can accurately classify TB at chest radiography with an AUC of 0.99. A radiologist-augmented approach for cases where there was disagreement among the classifiers further improved accuracy. © RSNA, 2017
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言小完成签到,获得积分10
刚刚
CodeCraft应助子铭采纳,获得10
刚刚
suiwuya发布了新的文献求助10
刚刚
脑洞疼应助cistronic采纳,获得10
1秒前
一个正经人完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
楚江南发布了新的文献求助10
2秒前
鸭梨很大完成签到 ,获得积分10
2秒前
mft关闭了mft文献求助
2秒前
巴卡发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
ruqayyah发布了新的文献求助10
4秒前
asadguy完成签到,获得积分10
5秒前
科研通AI2S应助微笑的千雁采纳,获得10
6秒前
6秒前
Kayla完成签到 ,获得积分10
6秒前
6秒前
7秒前
cg7发布了新的文献求助10
7秒前
8秒前
小陆完成签到,获得积分10
8秒前
阿尔吉侬发布了新的文献求助10
9秒前
陈晚拧完成签到 ,获得积分10
10秒前
情怀应助谁用的我的名字采纳,获得10
10秒前
10秒前
10秒前
我不困发布了新的文献求助10
10秒前
小陆发布了新的文献求助10
11秒前
JamesPei应助lixiaolu采纳,获得10
12秒前
微笑的千雁完成签到,获得积分10
13秒前
13秒前
shark发布了新的文献求助10
13秒前
13秒前
h268179发布了新的文献求助10
14秒前
长歌完成签到,获得积分10
14秒前
cistronic发布了新的文献求助10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304