劈形算符
欧米茄
有界函数
灵敏度(控制系统)
边界(拓扑)
领域(数学分析)
数学
Neumann边界条件
同种类的
组合数学
数学分析
物理
电子工程
量子力学
工程类
作者
Takasi Senba,Kentarou Fujie
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2015-11-01
卷期号:21 (1): 81-102
被引量:60
标识
DOI:10.3934/dcdsb.2016.21.81
摘要
This paper is concerned with the parabolic-elliptic Keller-Segel system with signal-dependent sensitivity $\chi(v)$,\begin{align*}\begin{cases}u_t=\Delta u - \nabla \cdot ( u \nabla \chi(v))&\mathrm{in}\ \Omega\times(0,\infty), \\0=\Delta v -v+u&\mathrm{in}\ \Omega\times(0,\infty),\end{cases}\end{align*}under homogeneous Neumann boundary condition in a smoothly bounded domain$\Omega \subset \mathbb{R}^2$with nonnegative initial data $u_0 \in C^{0}(\overline{\Omega})$, $\not\equiv 0$.  In the special case $\chi(v)=\chi_0 \log v\, (\chi_0>0)$,global existence and boundedness of the solution to the system were proved under some smallness condition on $\chi_0$ by Biler (1999) and Fujie, Winkler and Yokota (2015).In the present work, global existence and boundedness in the system will be established for general sensitivity $\chi$ satisfying $\chi'>0$ and$\chi'(s) \to 0 $ as $s\to \infty$.In particular, this establishes global existence and boundedness in the case $\chi(v)=\chi_0\log v$ with large $\chi_0>0$.Moreover, although the methods in the previous results are effective for only few specific cases, the present method can be applied to more general cases requiring only the essential conditions. Actually, our condition is necessary, since there are many radial blow-up solutions in the case $\inf_{s>0} \chi^\prime (s) >0$.
科研通智能强力驱动
Strongly Powered by AbleSci AI