A feature selection framework for anxiety disorder analysis using a novel multiview harris hawk optimization algorithm

计算机科学 特征选择 特征(语言学) 人工智能 维数之咒 预处理器 机器学习 焦虑 数据预处理 算法 数据挖掘 医学 语言学 精神科 哲学
作者
Ahmed Hamed,Marwa F. Mohamed
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:143: 102605-102605
标识
DOI:10.1016/j.artmed.2023.102605
摘要

Machine learning (ML) has demonstrated its ability to exploit important relationships within data collection, which can be used in the diagnosis, treatment, and prediction of outcomes in a variety of clinical contexts. Anxiety mental disorder analysis is one of the pending difficulties that ML can help with. A thorough study is demanded to gain a better understanding of this illness. Since the anxiety data is generally multidimensional, which complicates processing and as a result of technology improvements, medical data from several perspectives, known as multiview data (MVD), is being collected. Each view has its own data type and feature values, so there is a lot of diversity. This work introduces a novel preprocessing feature selection (FS) approach, multiview harris hawk optimization (MHHO), which has the potential to reduce the dimensionality of anxiety data, hence reducing analytical effort. The uniqueness of MHHO originates from combining a multiview linking methodology with the power of the harris hawk optimization (HHO) method. The HHO is used to identify the lowest optimal MVD feature subset, while multiview linking is utilized to find a promising fitness function to direct the HHO FS while accounting for all data views' heterogeneity. The complexity of MHHO is O(THL2), where T is the number of iterations, H is the number of involved harris hawks, and L is the number of objects. Using two publicly available anxiety MVDs, MHHO is validated against ten recent rivals in its category. The experimental findings show that MHHO has a considerable advantage in terms of convergence speed (converging in less than ten iterations), subset size (removing 75% of the views; reducing feature size by 66%), and classification accuracy (approaching 100%). Furthermore, statistical analyses reveal that MHHO is statistically different from its competitors, bolstering its applicability. Finally, feature importance is evaluated, shedding light on the most anxiety-inducing characteristics. The likelihood of developing additional disorders (such as depression or stress) is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助称心乐枫采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
yue完成签到,获得积分10
5秒前
5秒前
6秒前
panjunlu发布了新的文献求助10
6秒前
小绿茶完成签到,获得积分10
6秒前
6秒前
7秒前
李健应助max采纳,获得10
9秒前
gqqq发布了新的文献求助10
9秒前
sanwan完成签到,获得积分10
10秒前
月绛完成签到,获得积分10
10秒前
10秒前
江文发布了新的文献求助10
11秒前
lucyliu发布了新的文献求助10
11秒前
12秒前
方小发布了新的文献求助10
12秒前
SciGPT应助善良的路灯采纳,获得10
13秒前
yyang完成签到,获得积分10
13秒前
安yang发布了新的文献求助10
13秒前
14秒前
缓慢平蓝完成签到,获得积分10
15秒前
16秒前
迷人立轩发布了新的文献求助10
17秒前
勤恳曼寒完成签到,获得积分10
18秒前
Totoro发布了新的文献求助10
19秒前
天道酬勤发布了新的文献求助10
20秒前
qikkk应助gqqq采纳,获得10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606