数学
球(数学)
巴拿赫空间
有界函数
极大算子
哈迪空间
组合数学
极大函数
数学分析
作者
Yiqun Chen,Hongchao Jia,Dachun Yang
出处
期刊:Tokyo Journal of Mathematics
[Publication Committee for the Tokyo Journal of Mathematics]
日期:2023-01-01
卷期号:-1 (-1)
被引量:1
标识
DOI:10.3836/tjm/1502179390
摘要
Let $X$ be a ball quasi-Banach function space on ${\mathbb R}^n$ and $H_X({\mathbb R}^n)$ the Hardy space associated with $X$, and let $\alpha\in(0,n)$ and $\beta\in(1,\infty)$. In this article, assuming that the (powered) Hardy--Littlewood maximal operator satisfies the Fefferman--Stein vector-valued maximal inequality on $X$ and is bounded on the associate space of $X$, the authors prove that the fractional integral $I_{\alpha}$ can be extended to a bounded linear operator from $H_X({\mathbb R}^n)$ to $H_{X^{\beta}}({\mathbb R}^n)$ if and only if there exists a positive constant $C$ such that, for any ball $B\subset \mathbb{R}^n$, $|B|^{\frac{\alpha}{n}}\leq C \|\mathbf{1}_B\|_X^{\frac{\beta-1}{\beta}}$, where $X^{\beta}$ denotes the $\beta$-convexification of $X$. Moreover, under some different reasonable assumptions on both $X$ and another ball quasi-Banach function space $Y$, the authors also consider the mapping property of $I_{\alpha}$ from $H_X({\mathbb R}^n)$ to $H_Y({\mathbb R}^n)$ via using the extrapolation theorem. All these results have a wide range of applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI