Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 艺术 数学分析 音乐剧 视觉艺术 图像(数学) 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:88
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谭完成签到 ,获得积分10
1秒前
猪猪hero应助元谷雪采纳,获得10
1秒前
new_vision完成签到,获得积分10
1秒前
鲤鱼紫易发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
cg完成签到 ,获得积分10
2秒前
顾矜应助hehe采纳,获得10
2秒前
星火完成签到,获得积分10
2秒前
seven765完成签到,获得积分10
2秒前
粗心的绾绾应助飞云采纳,获得10
2秒前
iNk应助田鑫智采纳,获得10
3秒前
禹无极发布了新的文献求助10
3秒前
Solar energy完成签到,获得积分10
3秒前
wyg117完成签到,获得积分10
4秒前
huyan完成签到,获得积分10
4秒前
4秒前
LIU完成签到,获得积分10
4秒前
一直会飞的猪完成签到 ,获得积分10
5秒前
小王同学完成签到,获得积分20
5秒前
5秒前
笑笑应助TaoJ采纳,获得50
5秒前
pqyang发布了新的文献求助10
5秒前
5秒前
务实映之完成签到,获得积分10
6秒前
6秒前
是瓜瓜不完成签到,获得积分10
6秒前
6秒前
吕布完成签到,获得积分10
7秒前
聚散流沙完成签到,获得积分10
7秒前
谜记完成签到,获得积分10
7秒前
心会完成签到,获得积分10
7秒前
Kiosta完成签到,获得积分10
7秒前
zhouyong发布了新的文献求助10
8秒前
winifred完成签到 ,获得积分10
8秒前
包容宛应助飞云采纳,获得10
8秒前
Verdant_Official完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Electrolytes, Interfaces and Interphases 200
The Handbook of Medicinal Chemistry: Principles and Practice 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834152
求助须知:如何正确求助?哪些是违规求助? 3376619
关于积分的说明 10494128
捐赠科研通 3096084
什么是DOI,文献DOI怎么找? 1704842
邀请新用户注册赠送积分活动 820133
科研通“疑难数据库(出版商)”最低求助积分说明 771885