数学
随机微分方程
离散化
应用数学
马尔可夫链
乘法函数
马尔可夫过程
布朗运动
近似误差
几何布朗运动
数学分析
扩散过程
统计
计算机科学
知识管理
创新扩散
作者
Peng Chen,Qi-Man Shao,Lihu Xu
摘要
We view the classical Lindeberg principle in a Markov process setting to establish a probability approximation framework by the associated Itô's formula and Markov operator. As applications, we study the error bounds of the following three approximations: approximating a family of online stochastic gradient descents (SGDs) by a stochastic differential equation (SDE) driven by multiplicative Brownian motion, Euler–Maruyama (EM) discretization for multi-dimensional Ornstein–Uhlenbeck stable process and multivariate normal approximation. All these error bounds are in Wasserstein-1 distance.
科研通智能强力驱动
Strongly Powered by AbleSci AI