PST-Diff: Achieving High-Consistency Stain Transfer by Diffusion Models With Pathological and Structural Constraints

一致性(知识库) 计算机科学 病态的 污渍 扩散 人工智能 医学 病理 物理 热力学 染色
作者
Yufang He,Zeyu Liu,M. Qi,Shengwei Ding,Peng Zhang,Fan Song,Chenbin Ma,Huijie Wu,Ruxin Cai,Youdan Feng,Haonan Zhang,Tianyi Zhang,Guanglei Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3634-3647 被引量:15
标识
DOI:10.1109/tmi.2024.3430825
摘要

Histopathological examinations heavily rely on hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining. IHC staining can offer more accurate diagnostic details but it brings significant financial and time costs. Furthermore, either re-staining HE-stained slides or using adjacent slides for IHC may compromise the accuracy of pathological diagnosis due to information loss. To address these challenges, we develop PST-Diff, a method for generating virtual IHC images from HE images based on diffusion models, which allows pathologists to simultaneously view multiple staining results from the same tissue slide. To maintain the pathological consistency of the stain transfer, we propose the asymmetric attention mechanism (AAM) and latent transfer (LT) module in PST-Diff. Specifically, the AAM can retain more local pathological information of the source domain images, while ensuring the model's flexibility in generating virtual stained images that highly confirm to the target domain. Subsequently, the LT module transfers the implicit representations across different domains, effectively alleviating the bias introduced by direct connection and further enhancing the pathological consistency of PST-Diff. Furthermore, to maintain the structural consistency of the stain transfer, the conditional frequency guidance (CFG) module is proposed to precisely control image generation and preserve structural details according to the frequency recovery process. To conclude, the pathological and structural consistency constraints provide PST-Diff with effectiveness and superior generalization in generating stable and functionally pathological IHC images with the best evaluation score. In general, PST-Diff offers prospective application in clinical virtual staining and pathological image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助何某人采纳,获得10
刚刚
刚刚
茉莉完成签到 ,获得积分10
刚刚
3秒前
丰富芹菜发布了新的文献求助10
4秒前
李栖迟完成签到 ,获得积分10
7秒前
小喵不上课完成签到,获得积分10
7秒前
答题不卡发布了新的文献求助10
8秒前
寒冷的月亮完成签到 ,获得积分10
8秒前
8秒前
研友_ndv258完成签到,获得积分10
9秒前
11秒前
维尼完成签到,获得积分10
11秒前
稿子哥发布了新的文献求助10
13秒前
14秒前
heytexs完成签到,获得积分10
14秒前
大利发布了新的文献求助10
15秒前
15秒前
Csy发布了新的文献求助10
17秒前
17秒前
今后应助稿子哥采纳,获得10
18秒前
空咻咻发布了新的文献求助10
19秒前
zx发布了新的文献求助10
22秒前
23秒前
23秒前
大利完成签到,获得积分20
24秒前
AX完成签到 ,获得积分10
24秒前
25秒前
欢呼山雁发布了新的文献求助10
26秒前
哈哈哈发布了新的文献求助10
28秒前
31秒前
李亚男完成签到,获得积分10
31秒前
李大侠完成签到,获得积分10
33秒前
陈泓宇发布了新的文献求助10
33秒前
田様应助哈哈哈采纳,获得10
33秒前
34秒前
baobaoxiong完成签到,获得积分10
35秒前
共享精神应助yueban采纳,获得10
36秒前
Twonej应助进进采纳,获得60
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874707
求助须知:如何正确求助?哪些是违规求助? 6509083
关于积分的说明 15674833
捐赠科研通 4992230
什么是DOI,文献DOI怎么找? 2691001
邀请新用户注册赠送积分活动 1633442
关于科研通互助平台的介绍 1591118