PST-Diff: Achieving High-Consistency Stain Transfer by Diffusion Models With Pathological and Structural Constraints

一致性(知识库) 计算机科学 病态的 污渍 扩散 人工智能 医学 病理 物理 热力学 染色
作者
Yufang He,Zeyu Liu,M. Qi,Shengwei Ding,Peng Zhang,Fan Song,Chenbin Ma,Huijie Wu,Ruxin Cai,Youdan Feng,Haonan Zhang,Tianyi Zhang,Guanglei Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3634-3647 被引量:15
标识
DOI:10.1109/tmi.2024.3430825
摘要

Histopathological examinations heavily rely on hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining. IHC staining can offer more accurate diagnostic details but it brings significant financial and time costs. Furthermore, either re-staining HE-stained slides or using adjacent slides for IHC may compromise the accuracy of pathological diagnosis due to information loss. To address these challenges, we develop PST-Diff, a method for generating virtual IHC images from HE images based on diffusion models, which allows pathologists to simultaneously view multiple staining results from the same tissue slide. To maintain the pathological consistency of the stain transfer, we propose the asymmetric attention mechanism (AAM) and latent transfer (LT) module in PST-Diff. Specifically, the AAM can retain more local pathological information of the source domain images, while ensuring the model's flexibility in generating virtual stained images that highly confirm to the target domain. Subsequently, the LT module transfers the implicit representations across different domains, effectively alleviating the bias introduced by direct connection and further enhancing the pathological consistency of PST-Diff. Furthermore, to maintain the structural consistency of the stain transfer, the conditional frequency guidance (CFG) module is proposed to precisely control image generation and preserve structural details according to the frequency recovery process. To conclude, the pathological and structural consistency constraints provide PST-Diff with effectiveness and superior generalization in generating stable and functionally pathological IHC images with the best evaluation score. In general, PST-Diff offers prospective application in clinical virtual staining and pathological image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
123发布了新的文献求助10
4秒前
Zongxin完成签到,获得积分10
5秒前
7秒前
镜缘完成签到 ,获得积分10
7秒前
8秒前
绿树成荫发布了新的文献求助10
9秒前
10秒前
当人不浪发布了新的文献求助10
11秒前
英姑应助木悠采纳,获得10
13秒前
七七七发布了新的文献求助10
13秒前
丘比特应助安详的面包采纳,获得10
13秒前
15秒前
15秒前
s5228201完成签到 ,获得积分10
16秒前
大模型应助singxu采纳,获得10
17秒前
昭昭发布了新的文献求助10
18秒前
当人不浪完成签到,获得积分10
19秒前
紫紫完成签到,获得积分10
20秒前
21秒前
刘学发布了新的文献求助10
21秒前
21秒前
gg完成签到,获得积分10
22秒前
完美世界应助喜悦语堂采纳,获得10
22秒前
鹿冠冠完成签到,获得积分10
25秒前
26秒前
紫紫发布了新的文献求助10
26秒前
26秒前
芝士完成签到 ,获得积分10
27秒前
zls发布了新的文献求助10
28秒前
刘子田发布了新的文献求助10
29秒前
爆米花应助常常采纳,获得10
30秒前
singxu发布了新的文献求助10
32秒前
Ulrica完成签到 ,获得积分10
32秒前
33秒前
充电宝应助小何采纳,获得10
34秒前
元夕完成签到,获得积分10
34秒前
35秒前
喜悦语堂发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874046
求助须知:如何正确求助?哪些是违规求助? 6504297
关于积分的说明 15673148
捐赠科研通 4991692
什么是DOI,文献DOI怎么找? 2690738
邀请新用户注册赠送积分活动 1633280
关于科研通互助平台的介绍 1590965