A network-based framework to discover treatment-response-predicting biomarkers for complex diseases

计算生物学 人工智能 数据科学 计算机科学 生物
作者
Uday Shankar Shanthamallu,Casey L. Kilpatrick,Alex L. Jones,Jonathan M. Rubin,Alif Saleh,Albert‐László Barabási,Viatcheslav R. Akmaev,Susan Dina Ghiassian
出处
期刊:The Journal of Molecular Diagnostics [Elsevier BV]
卷期号:26 (10): 917-930
标识
DOI:10.1016/j.jmoldx.2024.06.008
摘要

The potential of precision medicine to transform complex autoimmune disease treatment is often challenged by limited data availability and inadequate sample size when compared with the number of molecular features found in high-throughput multi-omics data sets. To address this issue, the novel framework PRoBeNet (Predictive Response Biomarkers using Network medicine) was developed. PRoBeNet operates under the hypothesis that the therapeutic effect of a drug propagates through a protein-protein interaction network to reverse disease states. PRoBeNet prioritizes biomarkers by considering i) therapy-targeted proteins, ii) disease-specific molecular signatures, and iii) an underlying network of interactions among cellular components (the human interactome). PRoBeNet helped discover biomarkers predicting patient responses to both an established autoimmune therapy (infliximab) and an investigational compound (a mitogen-activated protein kinase 3/1 inhibitor). The predictive power of PRoBeNet biomarkers was validated with retrospective gene-expression data from patients with ulcerative colitis and rheumatoid arthritis and prospective data from tissues from patients with ulcerative colitis and Crohn disease. Machine-learning models using PRoBeNet biomarkers significantly outperformed models using either all genes or randomly selected genes, especially when data were limited. These results illustrate the value of PRoBeNet in reducing features and for constructing robust machine-learning models when data are limited. PRoBeNet may be used to develop companion and complementary diagnostic assays, which may help stratify suitable patient subgroups in clinical trials and improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yj发布了新的文献求助10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
916应助Bin_Liu采纳,获得10
2秒前
JamesPei应助calvin采纳,获得10
2秒前
whisper发布了新的文献求助10
3秒前
雪糕发布了新的文献求助10
3秒前
红炉点血完成签到,获得积分10
4秒前
4秒前
5秒前
cwy发布了新的文献求助10
5秒前
mnliao完成签到,获得积分10
5秒前
YD发布了新的文献求助10
6秒前
sennialiu发布了新的文献求助20
7秒前
华仔应助cwy采纳,获得10
8秒前
猪猪hero应助雪糕采纳,获得10
9秒前
9秒前
9秒前
最初的远方完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
WZW完成签到 ,获得积分20
11秒前
ZW发布了新的文献求助10
12秒前
燕子发布了新的文献求助10
13秒前
whisper完成签到,获得积分10
13秒前
sdl发布了新的文献求助10
13秒前
14秒前
欢喜代桃发布了新的文献求助10
14秒前
万能图书馆应助YD采纳,获得10
15秒前
15秒前
konkon发布了新的文献求助10
15秒前
CharlotteBlue应助yj采纳,获得30
16秒前
tian发布了新的文献求助10
17秒前
iNk应助handan采纳,获得20
18秒前
19秒前
研友_VZG7GZ应助tt采纳,获得10
19秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3879722
求助须知:如何正确求助?哪些是违规求助? 3422149
关于积分的说明 10727962
捐赠科研通 3146944
什么是DOI,文献DOI怎么找? 1736240
邀请新用户注册赠送积分活动 838247
科研通“疑难数据库(出版商)”最低求助积分说明 783704