Prediction of thermal conductivity of frozen soils from basic soil properties using ensemble learning methods

土壤水分 集成学习 土壤科学 热导率 环境科学 地质学 矿物学 材料科学 机器学习 计算机科学 复合材料
作者
Xinye Song,Sai K. Vanapalli,Junping Ren
出处
期刊:Geoderma [Elsevier]
卷期号:450: 117053-117053 被引量:7
标识
DOI:10.1016/j.geoderma.2024.117053
摘要

Thermal conductivity is one of the important properties required for understanding the frozen soils behavior. There are several models available in the literature for the prediction of thermal conductivity of frozen soils based on the proportions of unfrozen water, ice, gas, and soil particles. In this study, two ensemble learning methods-based models; namely, the Random Forest (RF) model and the Least Squares Boosting (LSB) model, are extended to estimate the thermal conductivity of frozen soils. These models utilize basic soil properties as input parameters that include water content, dry density, temperature, and fractions of gravel, sand, silt, and clay, can be measured easily, or determined. Additionally, seven widely used thermal conductivity models, referred to as the traditional models for frozen soils, were evaluated. Both the RF and LSB models, as well as the traditional models, were assessed using data of 823 tests derived from 43 soils with different textures that were gathered from the literature. The results highlight that the traditional models have their strengths and limitations in terms of their use for different types of soils. In contrast, the proposed ensemble learning methods-based models provide higher prediction accuracy compared to the traditional models and can be applied to all soil types and temperature ranges. Furthermore, estimation from the ensemble learning methods-based models can be used to provide probability of multi-dimensional analysis of frozen soils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHENDQ发布了新的文献求助30
1秒前
aa发布了新的文献求助10
1秒前
思源应助ahac采纳,获得10
1秒前
vgqp完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
小丸子发布了新的文献求助10
6秒前
迁湾完成签到,获得积分20
7秒前
7秒前
多多完成签到,获得积分10
7秒前
vgqp发布了新的文献求助10
8秒前
慕青应助青岛彭于晏采纳,获得10
8秒前
义气的尔岚完成签到,获得积分20
8秒前
上官若男应助公维浩采纳,获得10
9秒前
bobo呀发布了新的文献求助30
10秒前
HC发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
顾矜应助shunshun采纳,获得10
14秒前
汉堡包应助chen采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
祭礼之龙完成签到,获得积分10
16秒前
17秒前
Gg121380发布了新的文献求助10
17秒前
17秒前
russing完成签到 ,获得积分10
18秒前
白当鱼完成签到,获得积分10
18秒前
小明应助默默采纳,获得10
18秒前
耍酷白亦完成签到,获得积分20
18秒前
DONG发布了新的文献求助10
19秒前
猩猩发布了新的文献求助10
20秒前
彩彩发布了新的文献求助10
21秒前
胡志飞完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5818082
求助须知:如何正确求助?哪些是违规求助? 5952802
关于积分的说明 15549403
捐赠科研通 4940318
什么是DOI,文献DOI怎么找? 2660907
邀请新用户注册赠送积分活动 1607135
关于科研通互助平台的介绍 1562104