LSTGCN: Inductive Spatial Temporal Imputation Using Long Short Term Dependencies

期限(时间) 插补(统计学) 计算机科学 数据挖掘 时态数据库 人工智能 模式识别(心理学) 计量经济学 机器学习 数学 缺少数据 物理 量子力学
作者
Longji Huang,Jianbin Huang,He Li,Jiangtao Cui
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3690645
摘要

Spatial temporal forecasting of urban sensors is essentially important for many urban systems, such as intelligent transportation and smart cities. However, due to the problem of hardware failure or network failure, there are some missing values or missing monitoring sensors that need to be interpolated. Recent research on deep learning has made substantial progress on imputation problem, especially temporal aspect (i.e., time series imputation), while little attention has been paid to spatial aspect (both dynamic and static) and long term temporal dependencies. In this paper, we proposed a spatial temporal imputation model, named Long Short Term Graph Convolution Networks (LSTGCN), which includes gated temporal extraction (GTE) module, multi-head attention based temporal capture (MHAT) module, long term periodic temporal encoding (LPTE) module and bidirectional spatial graph convolution (BSGC) module. The GTE adopts a gated mechanism to filter short-term temporal information, while the MHAT utilizes position encoding to enhance the difference of each time stamps, then use multi-head attention to capture short term temporal dependency. The BSGC is adopted to handle with spatial relationships between sensor nodes. And we design a periodic encoding technique to process long term temporal dependencies. The BSGC handles spatial relationships between sensor nodes, and a periodic encoding technique is used to process long-term temporal dependencies. Our experimental analysis includes completion and forecasting tasks, as well as transfer and ablation analyses. The results show that our proposed model outperforms state-of-the-art baselines on real-world datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的灭男完成签到,获得积分10
2秒前
Tttting关注了科研通微信公众号
3秒前
yu发布了新的文献求助10
3秒前
3秒前
musa关注了科研通微信公众号
4秒前
5秒前
5秒前
7秒前
Tempo发布了新的文献求助10
8秒前
Jian完成签到,获得积分10
9秒前
sgt发布了新的文献求助10
9秒前
银杏发布了新的文献求助10
9秒前
10秒前
DAWN完成签到 ,获得积分10
10秒前
烂漫访琴发布了新的文献求助10
12秒前
13秒前
2568269431发布了新的文献求助10
14秒前
15秒前
我爱Chem发布了新的文献求助10
18秒前
gzy完成签到,获得积分20
20秒前
辰星未湮完成签到 ,获得积分10
20秒前
Jasper应助小陆采纳,获得10
20秒前
科目三应助Tempo采纳,获得10
24秒前
我是老大应助武雨寒采纳,获得10
26秒前
zuducyow完成签到,获得积分10
37秒前
2024给2024的求助进行了留言
38秒前
明天见完成签到,获得积分10
39秒前
李健的小迷弟应助Tempo采纳,获得10
41秒前
科研通AI5应助expuery采纳,获得10
41秒前
CipherSage应助lucky珠采纳,获得10
42秒前
小马甲应助知易行难采纳,获得20
43秒前
43秒前
junz发布了新的文献求助10
44秒前
45秒前
45秒前
zhangyi完成签到,获得积分10
47秒前
科研通AI2S应助慕南枝采纳,获得30
48秒前
asdfks发布了新的文献求助10
48秒前
hzlong完成签到,获得积分10
49秒前
武雨寒发布了新的文献求助10
49秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627