Spatiotemporal Microstate Dynamics of Spike-free Scalp EEG Offer a Potential Biomarker for Refractory Temporal Lobe Epilepsy

颞叶 头皮 脑电图 癫痫 Spike(软件开发) 计算机科学 神经科学 动力学(音乐) 人工智能 模式识别(心理学) 医学 心理学 解剖 教育学 软件工程
作者
Rui Feng,H. J. Yang,Hao Huang,Zelin Chen,Ruiyan Feng,Nazia Hameed,Xudong Zhang,Jie Hu,Liang Chen,Shuo Lu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3453377
摘要

Refractory temporal lobe epilepsy (TLE) is one of the most frequently observed subtypes of epilepsy and endangers more than 50 million people world-wide. Although electroencephalogram (EEG) had been widely recognized as a classic tool to screen and diagnose epilepsy, for many years it heavily relied on identifying epileptic discharges and epileptogenic zone localization, which however, limits the understanding of refractory epilepsy due to the network nature of this disease. This work hypothesizes that the microstate dynamics based on resting-state scalp EEG can offer an additional network depiction of the disease and provide potential complementary evaluation tool for the TLE even without detectable epileptic discharges on EEG. We propose a novel framework for EEG microstate spatial-temporal dynamics (EEG-MiSTD) analysis based on machine learning to comprehensively model millisecond-changing whole-brain network dynamics. With only 100 seconds of resting-state EEG even without epileptic discharges, this approach successfully distinguishes TLE patients from healthy controls and is related to the lateralization of epileptic focus. Besides, microstate temporal and spatial features are found to be widely related to clinical parameters, which further demonstrate that TLE is a network disease. A preliminary exploration suggests that the spatial topography is sensitive to the following surgical outcomes. From such a new perspective, our results suggest that spatiotemporal microstate dynamics is potentially a biomarker of the disease. The developed EEG-MiSTD framework can probably be considered as a general tool to examine dynamical brain network disruption in a user-friendly way for other types of epilepsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
养乐多发布了新的文献求助30
刚刚
frank完成签到,获得积分20
刚刚
Mars完成签到,获得积分20
刚刚
guanfan完成签到,获得积分10
1秒前
FashionBoy应助萧十一郎3913采纳,获得10
1秒前
1秒前
1秒前
默默的凡松完成签到,获得积分10
1秒前
依依完成签到,获得积分10
1秒前
iNk应助乐观的中心采纳,获得10
2秒前
2秒前
糊涂的雁易应助bb2采纳,获得10
2秒前
patience发布了新的文献求助10
3秒前
lucky_wan完成签到,获得积分20
3秒前
星河圈揽发布了新的文献求助30
3秒前
3秒前
4秒前
wwy发布了新的文献求助10
4秒前
Franky完成签到,获得积分10
4秒前
星空舒完成签到,获得积分10
5秒前
寒冷依秋发布了新的文献求助10
5秒前
看不懂发布了新的文献求助10
5秒前
xiaozhu完成签到,获得积分10
5秒前
ayayaya完成签到 ,获得积分10
5秒前
周钦完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助慈祥的绮采纳,获得10
5秒前
Owen应助wwww采纳,获得10
6秒前
奋斗的桐发布了新的文献求助10
6秒前
lipc完成签到,获得积分10
7秒前
bkagyin应助月儿采纳,获得10
7秒前
蟹蟹发布了新的文献求助10
7秒前
guanfan发布了新的文献求助10
7秒前
8秒前
zzzzzzzzzj完成签到,获得积分20
8秒前
周小鱼发布了新的文献求助10
9秒前
Eva完成签到,获得积分10
10秒前
好吃的蛋挞完成签到,获得积分10
10秒前
SciGPT应助冷山采纳,获得10
11秒前
RNAPW完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793934
求助须知:如何正确求助?哪些是违规求助? 3338845
关于积分的说明 10292446
捐赠科研通 3055344
什么是DOI,文献DOI怎么找? 1676572
邀请新用户注册赠送积分活动 804572
科研通“疑难数据库(出版商)”最低求助积分说明 761980