ImAge quantitates aging and rejuvenation

返老还童 计算机科学 计算机视觉 艺术 人工智能 老年学 医学
作者
Martin Alvarez-Kuglen,Kenta Ninomiya,Haodong Qin,Delany Rodriguez,Lorenzo Fiengo,Chen Farhy,Wei-Mien Hsu,Brian D. Kirk,Aaron Havas,Gen‐Sheng Feng,Amanda J. Roberts,Rozalyn M. Anderson,Manuel Serrano,Peter D. Adams,Tatyana O. Sharpee,Alexey V. Terskikh
出处
期刊:Nature Aging 卷期号:4 (9): 1308-1327 被引量:11
标识
DOI:10.1038/s43587-024-00685-1
摘要

For efficient, cost-effective and personalized healthcare, biomarkers that capture aspects of functional, biological aging, thus predicting disease risk and lifespan more accurately and reliably than chronological age, are essential. We developed an imaging-based chromatin and epigenetic age (ImAge) that captures intrinsic age-related trajectories of the spatial organization of chromatin and epigenetic marks in single nuclei, in mice. We show that such trajectories readily emerge as principal changes in each individual dataset without regression on chronological age, and that ImAge can be computed using several epigenetic marks and DNA labeling. We find that interventions known to affect biological aging induce corresponding effects on ImAge, including increased ImAge upon chemotherapy treatment and decreased ImAge upon caloric restriction and partial reprogramming by transient OSKM expression in liver and skeletal muscle. Further, ImAge readouts from chronologically identical mice inversely correlated with their locomotor activity, suggesting that ImAge may capture elements of biological and functional age. In sum, we developed ImAge, an imaging-based biomarker of aging with single-cell resolution rooted in the analysis of spatial organization of epigenetic marks. Alvarez-Kuglen, Ninomiya, Qin, Rodriguez et al. demonstrate that the spatial organization of chromatin and epigenetic marks in individual nuclei follows age-related trajectories that can be captured by an imaging-based biomarker of aging (ImAge).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁国庆完成签到 ,获得积分10
刚刚
鱿鱼炒黄瓜完成签到 ,获得积分10
2秒前
3秒前
3秒前
体贴雨真应助YAN采纳,获得10
5秒前
LvCR完成签到 ,获得积分10
5秒前
7秒前
7秒前
7秒前
小白发布了新的文献求助10
8秒前
9秒前
晶晶发布了新的文献求助10
11秒前
热心的豌豆完成签到 ,获得积分10
11秒前
自由马儿发布了新的文献求助10
12秒前
杨华启应助吱吱的孜孜采纳,获得80
13秒前
后陡门小学生完成签到 ,获得积分10
13秒前
13秒前
YAN完成签到,获得积分10
14秒前
17秒前
聪慧的安蕾完成签到 ,获得积分10
18秒前
18秒前
sylinmm完成签到,获得积分10
20秒前
科研通AI6.2应助自由马儿采纳,获得10
22秒前
23秒前
25秒前
Fred发布了新的文献求助10
25秒前
26秒前
搜集达人应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
27秒前
慕青应助科研通管家采纳,获得10
27秒前
Deadman完成签到,获得积分10
28秒前
维恰完成签到 ,获得积分10
31秒前
32秒前
Herry-Jeremy发布了新的文献求助10
34秒前
34秒前
进击的黄金小涵完成签到,获得积分20
35秒前
小二郎应助帅气的向珊采纳,获得10
35秒前
结实抽屉发布了新的文献求助10
36秒前
科研狗应助mark2021采纳,获得30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870051
求助须知:如何正确求助?哪些是违规求助? 6457786
关于积分的说明 15662561
捐赠科研通 4986068
什么是DOI,文献DOI怎么找? 2688646
邀请新用户注册赠送积分活动 1630981
关于科研通互助平台的介绍 1589097