Superlarge, Rigidified DNA Tetrahedron with a Y-Shaped Backbone for Organizing Biomolecules Spatially and Maintaining Their Full Bioactivity

四面体 生物分子 DNA 纳米技术 材料科学 结晶学 化学 生物化学
作者
Weijun Wang,Wenqing Wang,Yaxin Chen,Mengling Lin,Yanru Chen,Ruijin Zeng,Tenghang He,Zhifa Shen,Zai‐Sheng Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (28): 18257-18281 被引量:7
标识
DOI:10.1021/acsnano.3c13189
摘要

A major impediment to the clinical translation of DNA tiling nanostructures is a technical bottleneck for the programmable assembly of DNA architectures with well-defined local geometry due to the inability to achieve both sufficient structural rigidity and a large framework. In this work, a Y-backbone was inserted into each face to construct a superlarge, sufficiently rigidified tetrahedral DNA nanostructure (called RDT) with extremely high efficiency. In RDT, the spatial size increased by 6.86-fold, and the structural rigidity was enhanced at least 4-fold, contributing to an ∼350-fold improvement in the resistance to nucleolytic degradation even without a protective coating. RDT can be mounted onto an artificial lipid-bilayer membrane with molecular-level precision and well-defined spatial orientation that can be validated using the fluorescence resonance energy transfer (FRET) assay. The spatial orientation of Y-shaped backbone-rigidified RDT is unachievable for conventional DNA polyhedrons and ensures a high level of precision in the geometric positioning of diverse biomolecules with an approximately homogeneous environment. In tests of RDT, surface-confined horseradish peroxidase (HRP) exhibited nearly 100% catalytic activity and targeting aptamer-immobilized gold nanoparticles showed 5.3-fold enhanced cellular internalization. Significantly, RDT exhibited a 27.5-fold enhanced structural stability in a bodily environment and did not induce detectable systemic toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助一只小锦李采纳,获得10
1秒前
棒de发布了新的文献求助10
1秒前
别凡发布了新的文献求助10
2秒前
fantasy发布了新的文献求助30
2秒前
ppxx发布了新的文献求助10
3秒前
Ava应助安安采纳,获得10
3秒前
小小楊完成签到,获得积分10
4秒前
上善若水发布了新的文献求助10
4秒前
5秒前
123发布了新的文献求助10
5秒前
所所应助赫连涵柏采纳,获得30
6秒前
妮妮妮完成签到 ,获得积分10
6秒前
酷酷学完成签到,获得积分10
6秒前
感动思松完成签到,获得积分20
7秒前
Gxmmmm_应助科研通管家采纳,获得10
7秒前
飘飘玲应助科研通管家采纳,获得10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
啊薛薛薛完成签到,获得积分10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
小小楊发布了新的文献求助10
9秒前
Sky完成签到,获得积分10
9秒前
alanbike完成签到,获得积分10
9秒前
10秒前
家若完成签到 ,获得积分10
10秒前
aaaaa完成签到,获得积分10
10秒前
LIXI发布了新的文献求助10
10秒前
10秒前
浮游应助123采纳,获得10
11秒前
万能图书馆应助上善若水采纳,获得10
11秒前
感动思松发布了新的文献求助30
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4929495
求助须知:如何正确求助?哪些是违规求助? 4198409
关于积分的说明 13042098
捐赠科研通 3971795
什么是DOI,文献DOI怎么找? 2176412
邀请新用户注册赠送积分活动 1193313
关于科研通互助平台的介绍 1104202