A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning

可解释性 计算机科学 人工智能 图形 磁共振弥散成像 一致性(知识库) 机器学习 理论计算机科学 磁共振成像 医学 放射科
作者
Yongcheng Zong,Qiankun Zuo,Michael K. Ng,Baiying Lei,Shuqiang Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10389-10403 被引量:32
标识
DOI:10.1109/tpami.2024.3442811
摘要

Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
小杭76应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得150
1秒前
SciGPT应助科研通管家采纳,获得20
1秒前
可爱的函函应助科研通管家采纳,获得150
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Hello应助甜甜的枫采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
ZOE应助科研通管家采纳,获得150
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得150
2秒前
今后应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得150
2秒前
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
追人的风筝完成签到,获得积分20
4秒前
贪玩岱周完成签到,获得积分20
5秒前
5秒前
小羊同学发布了新的文献求助10
5秒前
思源应助周易采纳,获得10
7秒前
7秒前
阿绿完成签到 ,获得积分10
7秒前
8秒前
9秒前
jianlai发布了新的文献求助10
9秒前
栀鸢完成签到,获得积分20
10秒前
wddd333333完成签到,获得积分10
11秒前
小马甲应助goodsharpless采纳,获得10
12秒前
13秒前
蛇叔发布了新的文献求助10
13秒前
13秒前
浮游应助肯瑞恩哭哭采纳,获得10
14秒前
英俊的铭应助糊涂的友安采纳,获得10
14秒前
赘婿应助xiao白采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182327
求助须知:如何正确求助?哪些是违规求助? 4368980
关于积分的说明 13604725
捐赠科研通 4220489
什么是DOI,文献DOI怎么找? 2314726
邀请新用户注册赠送积分活动 1313449
关于科研通互助平台的介绍 1262141