MNMDCDA: prediction of circRNA–disease associations by learning mixed neighborhood information from multiple distances

计算机科学 卷积神经网络 水准点(测量) 分类器(UML) 人工智能 机器学习 图形 相似性(几何) 数据挖掘 计算生物学 理论计算机科学 生物 大地测量学 地理 图像(数学)
作者
Yang Li,Xuegang Hu,Lei Wang,Peipei Li,Zhu‐Hong You
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:16
标识
DOI:10.1093/bib/bbac479
摘要

Abstract Emerging evidence suggests that circular RNA (circRNA) is an important regulator of a variety of pathological processes and serves as a promising biomarker for many complex human diseases. Nevertheless, there are relatively few known circRNA–disease associations, and uncovering new circRNA–disease associations by wet-lab methods is time consuming and costly. Considering the limitations of existing computational methods, we propose a novel approach named MNMDCDA, which combines high-order graph convolutional networks (high-order GCNs) and deep neural networks to infer associations between circRNAs and diseases. Firstly, we computed different biological attribute information of circRNA and disease separately and used them to construct multiple multi-source similarity networks. Then, we used the high-order GCN algorithm to learn feature embedding representations with high-order mixed neighborhood information of circRNA and disease from the constructed multi-source similarity networks, respectively. Finally, the deep neural network classifier was implemented to predict associations of circRNAs with diseases. The MNMDCDA model obtained AUC scores of 95.16%, 94.53%, 89.80% and 91.83% on four benchmark datasets, i.e., CircR2Disease, CircAtlas v2.0, Circ2Disease and CircRNADisease, respectively, using the 5-fold cross-validation approach. Furthermore, 25 of the top 30 circRNA–disease pairs with the best scores of MNMDCDA in the case study were validated by recent literature. Numerous experimental results indicate that MNMDCDA can be used as an effective computational tool to predict circRNA–disease associations and can provide the most promising candidates for biological experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
1秒前
1秒前
黄黄完成签到,获得积分0
1秒前
maofeng完成签到,获得积分10
1秒前
1秒前
南瓜豆腐完成签到 ,获得积分10
2秒前
加贝峥发布了新的文献求助10
2秒前
半农应助fuguier采纳,获得10
2秒前
科研努力版完成签到 ,获得积分10
2秒前
2秒前
2秒前
陈浩南完成签到,获得积分10
2秒前
白贝发布了新的文献求助10
3秒前
YCH完成签到,获得积分10
3秒前
3秒前
123完成签到,获得积分20
4秒前
4秒前
自由的雅容完成签到,获得积分10
5秒前
5秒前
wwwssss发布了新的文献求助10
5秒前
5秒前
玉yu完成签到,获得积分10
5秒前
Aoch发布了新的文献求助10
6秒前
孙皓阳完成签到,获得积分20
6秒前
TRY发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
一一完成签到,获得积分10
7秒前
解语花完成签到,获得积分10
7秒前
科研通AI2S应助东东采纳,获得10
7秒前
大力的银耳汤完成签到,获得积分10
7秒前
鱼鱼完成签到 ,获得积分10
7秒前
烟花应助活力菠萝采纳,获得30
8秒前
自信的小鸽子完成签到,获得积分10
8秒前
8秒前
8秒前
LICHT完成签到,获得积分10
8秒前
旺旺完成签到,获得积分10
8秒前
七十二时完成签到 ,获得积分10
9秒前
Owen应助儒雅大象采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555414
求助须知:如何正确求助?哪些是违规求助? 4640095
关于积分的说明 14659158
捐赠科研通 4582118
什么是DOI,文献DOI怎么找? 2513067
邀请新用户注册赠送积分活动 1487811
关于科研通互助平台的介绍 1458798