Differentiation of qualified tea beverages from spoiled ones by the LC-MS–based analysis of their polycarboxylic acids

苹果酸 酒石酸 琥珀酸 丙二酸 富马酸 化学 色谱法 基质(化学分析) 食品科学 有机化学 柠檬酸
作者
Yuting Kang,Chenghua Li,Huiru Li,Jing Li,Kezhi Jiang
出处
期刊:Food Quality and Safety [Oxford University Press]
卷期号:7 被引量:4
标识
DOI:10.1093/fqsafe/fyac067
摘要

Abstract Polycarboxylic acids (PACs) are important metabolic products in almost all living bodies, yet current analytical methods for detection of PACs in tea beverages are still unsatisfactory due to the complex matrix and physicochemical properties of PACs. In this work, a rapid method was developed for the simultaneous determination of 7 PACs, including tartaric acid, α-ketoglutaric acid, malic acid, malonic acid, cis-aconitic acid, succinic acid, and fumaric acid, in beverages, based on selective removal of the matrix in combination with liquid chromatography–mass spectrometry (LC-MS) analysis. By stirring with activated carbon and the Na2CO3 solution, the matrix in beverages was selectively removed, and PACs were almost retained in the supernatant of diluted Na2CO3 solution. Under optimized parameters, the limit of quantitation for the PACs was in the range of 1–50 ng/mL, and the content of the PACs in 8 beverages was determined with the recovery range of 72.2%–122.5%. The contents of malic acid, malonic acid, and succinic acid in tea beverages were found to be greater than those in non-tea beverages. Moreover, the concentration of these PACs in beverages was found to be multiplied many times in their deterioration period, especially for fumaric acid and α-ketoglutaric acid. These results indicated that PACs can be selected as a criterion to differentiate qualified tea beverages from spoiled beverages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡萨卡萨发布了新的文献求助20
1秒前
dahafei完成签到,获得积分10
1秒前
2秒前
小二郎应助科研F5采纳,获得10
2秒前
2秒前
善学以致用应助stt1011采纳,获得10
3秒前
dahafei发布了新的文献求助10
3秒前
周雪艳完成签到,获得积分20
4秒前
Fe_001完成签到 ,获得积分10
6秒前
kk发布了新的文献求助10
7秒前
8秒前
8秒前
Ava应助廖赛楠采纳,获得10
8秒前
可爱的函函应助fuchao采纳,获得30
9秒前
Bailey完成签到,获得积分10
9秒前
10秒前
ycw123发布了新的文献求助10
12秒前
加加油完成签到,获得积分10
14秒前
火龙果发布了新的文献求助10
14秒前
皮皮猪发布了新的文献求助30
17秒前
称心发夹完成签到 ,获得积分10
17秒前
19秒前
深情安青应助书记采纳,获得10
19秒前
zhogwe完成签到,获得积分10
19秒前
22秒前
糖糖关注了科研通微信公众号
23秒前
23秒前
xch发布了新的文献求助10
25秒前
25秒前
野性的眼睛完成签到,获得积分10
27秒前
tshrdhyukfesfd完成签到 ,获得积分10
27秒前
shenjy完成签到,获得积分10
27秒前
Hello应助ylz采纳,获得10
28秒前
29秒前
称心发夹发布了新的文献求助10
30秒前
31秒前
32秒前
33秒前
雪影完成签到,获得积分10
35秒前
冠心没有病完成签到,获得积分10
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046207
求助须知:如何正确求助?哪些是违规求助? 3583899
关于积分的说明 11391081
捐赠科研通 3311233
什么是DOI,文献DOI怎么找? 1822160
邀请新用户注册赠送积分活动 894381
科研通“疑难数据库(出版商)”最低求助积分说明 816213