已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-driven self-supervised learning system for seismic velocity inversion

反演(地质) 计算机科学 人工神经网络 人工智能 监督学习 深度学习 算法 合成数据 地震速度 波形 机器学习 数据挖掘 模式识别(心理学) 地质学 地震学 构造学 雷达 电信
作者
Bin Liu,Peng Jiang,Qingyang Wang,Yuxiao Ren,Senlin Yang,Anthony G. Cohn
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): R145-R161 被引量:17
标识
DOI:10.1190/geo2021-0302.1
摘要

Seismic velocity inversion plays a vital role in various applied seismology processes. A series of deep learning methods have been developed that rely purely on manually provided labels for supervision; however, their performances depend heavily on using large training data sets with corresponding velocity models. Because no physical laws are used in the training phase, it is usually challenging to generalize trained neural networks to a new data domain. To mitigate these issues, we have embedded a seismic forward modeling step at the end of a network to remap the inversion result back to seismic data and thus train the neural network through self-supervised loss, i.e., the misfit between the network input and output. As a result, we eliminate the need for many labeled velocity models, and physical laws are introduced when back-propagating gradients through the seismic forward modeling step. We verify the effectiveness of our approach through comprehensive experiments on synthetic data sets, where self-supervised learning outperforms the fully supervised approach, which accesses much more labeled data. The superior performance is even more significant when compared with a new data domain that has velocity models with faults and more geologic layers. Finally, in case of unknown and more complex data types, we develop a network-constrained full-waveform inversion (FWI) method. This method refines the initial prediction of the network by iteratively optimizing network parameters other than the velocity model, as found with the conventional FWI method, and demonstrates clear advantages in terms of interface and velocity accuracy. With these measures (self-supervised learning and network-constrained FWI), our physics-driven self-supervised learning system successfully mitigates issues such as the dependence on large labeled data sets, the absence of physical laws, and the difficulty in adapting to new data domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到 ,获得积分10
1秒前
英姑应助jillian采纳,获得10
1秒前
zy123发布了新的文献求助10
4秒前
iu1392发布了新的文献求助10
5秒前
6秒前
科研通AI5应助阔达鸿涛采纳,获得10
8秒前
8秒前
juju完成签到,获得积分20
11秒前
11秒前
WaitP应助zy123采纳,获得10
13秒前
15秒前
15秒前
fengyl发布了新的文献求助10
17秒前
十三完成签到,获得积分10
23秒前
WaitP应助天真乌冬面采纳,获得10
27秒前
四个金太阳完成签到,获得积分10
27秒前
招水若离完成签到,获得积分0
27秒前
888完成签到 ,获得积分10
30秒前
背水完成签到 ,获得积分10
31秒前
32秒前
天真乌冬面完成签到,获得积分10
37秒前
42秒前
落落完成签到 ,获得积分0
42秒前
小玉完成签到,获得积分20
43秒前
精明玲完成签到 ,获得积分10
44秒前
51秒前
Fool发布了新的文献求助200
52秒前
专炸油条完成签到 ,获得积分10
54秒前
技术的不能发表完成签到 ,获得积分10
56秒前
丘比特应助azuzuzu采纳,获得10
59秒前
wes完成签到 ,获得积分10
1分钟前
安静无招完成签到 ,获得积分10
1分钟前
111111完成签到,获得积分10
1分钟前
1分钟前
1分钟前
坚强的赛凤完成签到 ,获得积分10
1分钟前
大豹子发布了新的文献求助10
1分钟前
粥粥完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798422
求助须知:如何正确求助?哪些是违规求助? 3343818
关于积分的说明 10317793
捐赠科研通 3060542
什么是DOI,文献DOI怎么找? 1679588
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296