Physics-driven self-supervised learning system for seismic velocity inversion

反演(地质) 计算机科学 人工神经网络 人工智能 监督学习 深度学习 算法 合成数据 地震速度 波形 机器学习 数据挖掘 模式识别(心理学) 地质学 地震学 构造学 雷达 电信
作者
Bin Liu,Peng Jiang,Qingyang Wang,Yuxiao Ren,Senlin Yang,Anthony G. Cohn
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): R145-R161 被引量:17
标识
DOI:10.1190/geo2021-0302.1
摘要

Seismic velocity inversion plays a vital role in various applied seismology processes. A series of deep learning methods have been developed that rely purely on manually provided labels for supervision; however, their performances depend heavily on using large training data sets with corresponding velocity models. Because no physical laws are used in the training phase, it is usually challenging to generalize trained neural networks to a new data domain. To mitigate these issues, we have embedded a seismic forward modeling step at the end of a network to remap the inversion result back to seismic data and thus train the neural network through self-supervised loss, i.e., the misfit between the network input and output. As a result, we eliminate the need for many labeled velocity models, and physical laws are introduced when back-propagating gradients through the seismic forward modeling step. We verify the effectiveness of our approach through comprehensive experiments on synthetic data sets, where self-supervised learning outperforms the fully supervised approach, which accesses much more labeled data. The superior performance is even more significant when compared with a new data domain that has velocity models with faults and more geologic layers. Finally, in case of unknown and more complex data types, we develop a network-constrained full-waveform inversion (FWI) method. This method refines the initial prediction of the network by iteratively optimizing network parameters other than the velocity model, as found with the conventional FWI method, and demonstrates clear advantages in terms of interface and velocity accuracy. With these measures (self-supervised learning and network-constrained FWI), our physics-driven self-supervised learning system successfully mitigates issues such as the dependence on large labeled data sets, the absence of physical laws, and the difficulty in adapting to new data domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨羽完成签到,获得积分10
3秒前
linxunxiazhi完成签到,获得积分10
4秒前
犹豫亚男完成签到 ,获得积分20
5秒前
5秒前
5秒前
5秒前
SciGPT应助耿怀肖采纳,获得10
6秒前
7秒前
疯狂吃辣发布了新的文献求助10
8秒前
幸福的蓝血完成签到,获得积分10
9秒前
星辰大海应助李善聪采纳,获得10
9秒前
852应助追风少年采纳,获得10
9秒前
xyc完成签到,获得积分10
10秒前
senli2018发布了新的文献求助10
10秒前
tann发布了新的文献求助10
10秒前
飞阳完成签到,获得积分10
10秒前
犹豫亚男关注了科研通微信公众号
11秒前
Mikasa完成签到,获得积分10
12秒前
敏感代云完成签到,获得积分10
13秒前
14秒前
江屿完成签到,获得积分10
14秒前
zho应助一一采纳,获得10
14秒前
14秒前
英姑应助BowieHuang采纳,获得200
15秒前
耿怀肖完成签到,获得积分10
16秒前
likefei完成签到,获得积分20
18秒前
光电很亮发布了新的文献求助10
19秒前
耿怀肖发布了新的文献求助10
19秒前
20秒前
17完成签到 ,获得积分10
21秒前
爱学习给爱学习的求助进行了留言
21秒前
烟花应助senli2018采纳,获得10
21秒前
21秒前
香蕉觅云应助张尧摇摇摇采纳,获得10
24秒前
25秒前
科目三应助小杜老师采纳,获得10
26秒前
asd0817发布了新的文献求助10
27秒前
llay完成签到,获得积分10
27秒前
如意的导师完成签到,获得积分10
28秒前
无极微光应助fly采纳,获得20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177587
求助须知:如何正确求助?哪些是违规求助? 4366107
关于积分的说明 13594320
捐赠科研通 4216344
什么是DOI,文献DOI怎么找? 2312489
邀请新用户注册赠送积分活动 1311237
关于科研通互助平台的介绍 1259474