Radiomics Analysis Based on Optical Coherence Tomography to Prognose the Efficacy of Anti-VEGF Therapy of Retinal Vein Occlusion-Related Macular Edema

光学相干层析成像 医学 视网膜静脉 黄斑水肿 眼科 无线电技术 视网膜 闭塞 视网膜中央静脉阻塞 视网膜分支静脉阻塞 贝伐单抗 放射科 内科学 化疗
作者
Biying Chen,Jianing Qiu,Yongan Meng,Youling Liang,Dan Liu,Yuqian Hu,Zhishang Meng,Jing Luo
出处
期刊:Investigative Ophthalmology & Visual Science [Cadmus Press]
卷期号:66 (4): 74-74
标识
DOI:10.1167/iovs.66.4.74
摘要

Anti-vascular endothelial growth factor (anti-VEGF) agents are the first-line treatment for retinal vein occlusion-related macular edema (RVO-ME). However, the availability of reliable radiomic markers for evaluating the effectiveness of these agents is currently limited. The aim of this study was to develop machine learning approaches to evaluate the post-therapeutic effect of anti-VEGF treatment based on optical coherence tomography (OCT) images. A total of 152 patients diagnosed with RVO-ME who received at least one intravitreal injection of anti-VEGF were included in this study, as well as 81 patients as the external validation set. Pre-therapeutic B-scans of spectral-domain OCT images were collected and segmented using the Pyradiomics module within the 3D Slicer software platform. Radiomic features were extracted from the segmented images. We trained the logistic regression model and machine learning models using the selected features, and evaluated the performance of the three classifier models. In the back propagation neural network (BPNN) model, the area under the curve (AUC) of the training, test, and external validation sets were 0.977, 0.912, and 0.804, respectively. In the support vector machine (SVM) model, the AUC of the 3 sets were 0.916, 0.882, and 0.802. The OCT-omics scores indicated a high overall net benefit, as determined by decision curve analysis. The machine learning models based on OCT technology developed here demonstrated a promising ability to prognose anti-VEGF therapeutic responses for RVO-ME. The utilization of machine learning provides a new promising approach to assessing radiomic markers in research related to RVO-ME, having a good prospect for the application of the using of precision medicine in ophthalmology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过于傻逼完成签到,获得积分10
刚刚
刚刚
糖_完成签到 ,获得积分10
1秒前
罗先斗发布了新的文献求助10
1秒前
健壮的翠安完成签到,获得积分10
1秒前
平安喜乐完成签到,获得积分10
1秒前
zzznznnn发布了新的文献求助10
2秒前
2秒前
大个应助dawei采纳,获得10
2秒前
jinjinjin发布了新的文献求助10
2秒前
2秒前
2秒前
丘比特应助gs采纳,获得10
3秒前
3秒前
天天快乐应助欢喜的如蓉采纳,获得30
4秒前
科目三应助jiecao采纳,获得10
5秒前
科研通AI5应助小東采纳,获得10
5秒前
栗子完成签到,获得积分10
6秒前
6秒前
NN应助爱听歌忆枫采纳,获得10
6秒前
6秒前
gxqqqqqqq完成签到,获得积分10
6秒前
666完成签到,获得积分10
6秒前
6秒前
咕噜咕噜完成签到,获得积分10
7秒前
顾矜应助小奋青采纳,获得10
7秒前
歪比八不发布了新的文献求助10
7秒前
7秒前
18216781882发布了新的文献求助10
7秒前
8秒前
8秒前
落寒完成签到,获得积分10
8秒前
9秒前
9秒前
小東完成签到,获得积分10
9秒前
ZL发布了新的文献求助10
9秒前
冰箱发布了新的文献求助10
10秒前
10秒前
挚zhi完成签到,获得积分20
10秒前
科研通AI5应助ww采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835549
求助须知:如何正确求助?哪些是违规求助? 3377872
关于积分的说明 10500941
捐赠科研通 3097454
什么是DOI,文献DOI怎么找? 1705830
邀请新用户注册赠送积分活动 820717
科研通“疑难数据库(出版商)”最低求助积分说明 772219