煤矸石
煤
计算机科学
工艺工程
模式识别(心理学)
废物管理
环境科学
人工智能
工程类
材料科学
冶金
作者
Hai Tao,Lei Zhang,Zhipeng Sun,Xinchao Cui,Weixun Yi
出处
期刊:Sensors
[MDPI AG]
日期:2025-03-22
卷期号:25 (7): 1983-1983
被引量:2
摘要
The current methods for detecting coal gangue face several challenges, including low detection accuracy, a high probability of missed detections, and inadequate real-time performance. These issues stem from the complexities associated with diverse industrial environments and mining conditions, such as the mixing of coal gangue and insufficient illumination within coal mines. A detection model, referred to as EBD-YOLO, is proposed based on YOLOv11n. First, the C3k2-EMA module is integrated with the EMA attention mechanism within the C3k2 module of the backbone network, thereby enhancing the model’s feature extraction capabilities. Second, the introduction of the BiFPN module reduces computational complexity while enriching both semantic information and detail within the model. Finally, the incorporation of the DyHead detector head further enhances the model’s ability to express features in complex environments. The experimental results indicate that the precision (P) and recall (R) of the EBD-YOLO model are 88.7% and 83.9%, respectively, while the mean average precision (mAP@0.5) is 91.7%. These metrics represent increases of 3.4%, 3.7%, and 3.9% compared to those of the original model, respectively. Additionally, the frames per second (FPS) improved by 10.01%. Compared to the mainstream YOLO target detection algorithms, the EBD-YOLO detection model achieves the highest mAP@0.5 while maintaining superior detection speed. It exhibits a slight increase in computational load, despite an almost unchanged number of parameters, and demonstrates the best overall detection performance. The EBD-YOLO detection model effectively addresses the challenges of missed detections, false detections, and real-time detection in the complex environment of coal mines.
科研通智能强力驱动
Strongly Powered by AbleSci AI