已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Strategy Improvement of Coal Gangue Recognition Method of YOLOv11

煤矸石 计算机科学 工艺工程 模式识别(心理学) 废物管理 环境科学 人工智能 工程类 材料科学 冶金
作者
Hai Tao,Lei Zhang,Zhipeng Sun,Xinchao Cui,Weixun Yi
出处
期刊:Sensors [MDPI AG]
卷期号:25 (7): 1983-1983 被引量:2
标识
DOI:10.3390/s25071983
摘要

The current methods for detecting coal gangue face several challenges, including low detection accuracy, a high probability of missed detections, and inadequate real-time performance. These issues stem from the complexities associated with diverse industrial environments and mining conditions, such as the mixing of coal gangue and insufficient illumination within coal mines. A detection model, referred to as EBD-YOLO, is proposed based on YOLOv11n. First, the C3k2-EMA module is integrated with the EMA attention mechanism within the C3k2 module of the backbone network, thereby enhancing the model’s feature extraction capabilities. Second, the introduction of the BiFPN module reduces computational complexity while enriching both semantic information and detail within the model. Finally, the incorporation of the DyHead detector head further enhances the model’s ability to express features in complex environments. The experimental results indicate that the precision (P) and recall (R) of the EBD-YOLO model are 88.7% and 83.9%, respectively, while the mean average precision (mAP@0.5) is 91.7%. These metrics represent increases of 3.4%, 3.7%, and 3.9% compared to those of the original model, respectively. Additionally, the frames per second (FPS) improved by 10.01%. Compared to the mainstream YOLO target detection algorithms, the EBD-YOLO detection model achieves the highest mAP@0.5 while maintaining superior detection speed. It exhibits a slight increase in computational load, despite an almost unchanged number of parameters, and demonstrates the best overall detection performance. The EBD-YOLO detection model effectively addresses the challenges of missed detections, false detections, and real-time detection in the complex environment of coal mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小余同学完成签到,获得积分10
2秒前
竹园发布了新的文献求助10
3秒前
迷路的含桃完成签到 ,获得积分10
3秒前
卢大赛完成签到 ,获得积分10
5秒前
开心蛋挞完成签到 ,获得积分10
5秒前
5秒前
邓芊语完成签到,获得积分20
6秒前
7秒前
8秒前
zbearupz完成签到,获得积分10
9秒前
高亚楠发布了新的文献求助10
9秒前
福医小蟹发布了新的文献求助10
11秒前
12秒前
叶艳完成签到 ,获得积分10
12秒前
传奇3应助竹园采纳,获得10
12秒前
Ava应助dzjin采纳,获得10
13秒前
underoos完成签到,获得积分10
15秒前
L123发布了新的文献求助10
17秒前
18秒前
福医小蟹完成签到,获得积分10
18秒前
19秒前
yf发布了新的文献求助100
21秒前
彭于晏应助kuankuan采纳,获得10
21秒前
大模型应助Awaken采纳,获得10
22秒前
QQWOW发布了新的文献求助10
23秒前
25秒前
Rampant发布了新的文献求助10
26秒前
韩佃晖发布了新的文献求助10
29秒前
29秒前
SchroederC完成签到,获得积分10
30秒前
科研通AI6应助blueming采纳,获得10
30秒前
lanling完成签到,获得积分10
31秒前
姚小楠完成签到 ,获得积分10
32秒前
怡然的怜烟应助韩佃晖采纳,获得30
33秒前
完美世界应助zzzzz采纳,获得10
33秒前
33秒前
xin完成签到,获得积分10
34秒前
朴实子骞完成签到 ,获得积分10
35秒前
NexusExplorer应助张宝采纳,获得10
37秒前
xin发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407331
求助须知:如何正确求助?哪些是违规求助? 4524961
关于积分的说明 14100432
捐赠科研通 4438702
什么是DOI,文献DOI怎么找? 2436460
邀请新用户注册赠送积分活动 1428436
关于科研通互助平台的介绍 1406479