亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge-Driven Graph Representation Learning for Myocardial Infarction Localization

计算机科学 人工智能 心肌梗塞 图形 代表(政治) 医学 理论计算机科学 心脏病学 政治学 政治 法学
作者
Feng-Yi Guo,Ying An,Hulin Kuang,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (9): 6637-6650
标识
DOI:10.1109/jbhi.2025.3574688
摘要

The electrocardiogram (ECG) serves as a crucial tool for myocardial infarction (MI) localization, and deep learning methods have proven effective in assisting physicians with MI localization. Traditional MI localization methods are purely data-driven, and the quality of the data significantly affects the model's performance, particularly in the localization of rare MI. We propose a knowledge-driven graph representation learning (KD-GRL) framework which is designed to guide deep learning models in identifying key features for MI localization using prior knowledge. The MI localization knowledge graph (KG) is constructed by integrating medical knowledge about MI localization, including ECG leads and morphological manifestations, the correlations between MI localization labels, diagnostic rules, and patient demographic information. KG effectively represents the relationships among various entities, which include ECG signal entities, morphological feature entities, and demographic feature entities. The embeddings of these entities are obtained using parallel patient multi-feature extractors. Additionally, a KG aggregation method based on edge relation projection (ERP) is proposed to aggregate the relational information in the MI localization KG. Ultimately, the MI localization task is transformed into a link prediction task between patient entity and localization label entities within the KG. We conduct experiments on two public datasets, PTB and PTBXL, achieving F1-scores of 48.90% and 46.06%, respectively, both surpassing the comparison methods. Additionally, due to the incorporation of diagnostic knowledge, our method outperforms the comparison methods in localizing rare MIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唾沫星子完成签到,获得积分20
刚刚
李健应助着急的猴采纳,获得10
3秒前
林中雀完成签到 ,获得积分10
15秒前
23秒前
壮观百招完成签到,获得积分10
24秒前
着急的猴发布了新的文献求助10
27秒前
Cosmosurfer完成签到,获得积分10
27秒前
景云祥完成签到 ,获得积分10
28秒前
远方发布了新的文献求助10
31秒前
卖药丸的兔子完成签到 ,获得积分20
35秒前
38秒前
古今奇观完成签到 ,获得积分10
40秒前
zzzz完成签到,获得积分10
42秒前
leoMessi发布了新的文献求助10
42秒前
46秒前
qq完成签到 ,获得积分10
46秒前
拾柒完成签到 ,获得积分10
47秒前
瓜6完成签到 ,获得积分20
47秒前
还单身的晓夏完成签到,获得积分10
48秒前
49秒前
51秒前
遥知马发布了新的文献求助10
52秒前
qing1245完成签到,获得积分10
52秒前
54秒前
双目识林完成签到 ,获得积分10
59秒前
一二发布了新的文献求助10
59秒前
1分钟前
1分钟前
NexusExplorer应助zzzz采纳,获得10
1分钟前
YNHN完成签到 ,获得积分10
1分钟前
1分钟前
whoops完成签到 ,获得积分10
1分钟前
樊文慧发布了新的文献求助30
1分钟前
阿甘你好完成签到,获得积分10
1分钟前
张向向发布了新的文献求助10
1分钟前
兴奋的听筠完成签到,获得积分10
1分钟前
1分钟前
1分钟前
康心完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714155
求助须知:如何正确求助?哪些是违规求助? 5221116
关于积分的说明 15272841
捐赠科研通 4865689
什么是DOI,文献DOI怎么找? 2612277
邀请新用户注册赠送积分活动 1562440
关于科研通互助平台的介绍 1519639