Automated Crop Health Monitoring and Drone-Based Image Processing for Crop Disease Detection in Smart Farming Using IoT

无人机 作物 农业 物联网 图像处理 计算机科学 人工智能 嵌入式系统 农学 图像(数学) 生物 生态学 遗传学
作者
J. Arumai Ruban
出处
期刊:Journal of Information Systems Engineering and Management 卷期号:10 (45s): 1280-1297 被引量:1
标识
DOI:10.52783/jisem.v10i45s.9154
摘要

The innovative approach to automated CHM and disease detection in smart farming through the integration of drone-based image processing and IoT technologies. Combining information from IoT sensors and drone images can be complex, making it difficult to analyze CH effectively. To Create a comprehensive system that combines IoT sensors and drone imagery to facilitate real-time monitoring of CH, enabling early detection of diseases. Implement advanced image processing algorithms to accurately analyze drone-captured images and identify ESOCDs, improving detection rates. Efficient Particle Filter Multi-Target (EPFMT) Technique facilitates real-time crop disease detection, multi-target tracking, data fusion, and resource optimization. It includes noise reduction, to eliminate artifacts and improve the clarity of the images. PLSR- SEDA, PLSR in smart farming by effectively modelling the relationship between spectral data from drone imagery and various CH indicators, enabling precise disease identification and management. SEDA is used in boundaries of plant structures and potential disease symptoms in aerial imagery, facilitating precise analysis of CH and identification of affected areas. Spanning Tree Optimization (STO) is used to enhance the efficiency of data transmission, minimize energy consumption, and ensure reliable communication among IoT devices, facilitating timely detection and management of crop diseases in smart farming. The result shows that the frog eye leaf spot follows closely with an impressive accuracy of 92%, demonstrating strong detection capabilities, while bacterial leaf spot has a slightly lower accuracy at 90%, implemented using Python software. The future scope of automated CHM using drone-based image processing and IoT includes integrating ML for enhanced disease prediction, expanding sensor technologies for comprehensive soil and environmental analysis, and user-friendly platforms for planters to heighten reserve management and increase productivity while promoting sustainable agricultural practices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄紫茵发布了新的文献求助30
刚刚
刚刚
yolo发布了新的文献求助10
刚刚
夏夏发布了新的文献求助10
刚刚
搜集达人应助suiyi采纳,获得10
刚刚
刚刚
曾无忧发布了新的文献求助10
1秒前
端庄向雁发布了新的文献求助10
1秒前
明亮山水完成签到,获得积分10
1秒前
小趴菜应助wenbin采纳,获得10
1秒前
王俊涵发布了新的文献求助30
1秒前
1秒前
YYY发布了新的文献求助10
1秒前
七芙发布了新的文献求助10
2秒前
蓝色斑马完成签到,获得积分10
2秒前
从容的代真应助九九采纳,获得30
2秒前
在水一方应助脆脆采纳,获得30
2秒前
3秒前
3秒前
赫赛汀耐药完成签到,获得积分10
3秒前
拼搏的乐双完成签到,获得积分10
4秒前
muzi发布了新的文献求助10
4秒前
白白发布了新的文献求助10
4秒前
4秒前
4秒前
大胆香彤完成签到,获得积分10
5秒前
5秒前
科研通AI5应助yuexu采纳,获得20
6秒前
踏实的怜菡完成签到 ,获得积分10
6秒前
AdventureChen完成签到 ,获得积分10
6秒前
果蝇之母完成签到 ,获得积分20
7秒前
7秒前
7秒前
可靠的蜗牛完成签到 ,获得积分10
8秒前
orixero应助傅凌兰采纳,获得10
8秒前
8秒前
李爱国应助朱伟采纳,获得10
8秒前
JamesPei应助33ovo采纳,获得10
8秒前
Xxxx发布了新的文献求助10
9秒前
啤酒白菜发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928278
求助须知:如何正确求助?哪些是违规求助? 4197425
关于积分的说明 13038287
捐赠科研通 3970322
什么是DOI,文献DOI怎么找? 2175720
邀请新用户注册赠送积分活动 1192848
关于科研通互助平台的介绍 1103624