Construction and Validation of a Nomogram Model for Predicting Pulmonary Hypertension in Patients with Obstructive Sleep Apnea

医学 列线图 阻塞性睡眠呼吸暂停 肺动脉高压 睡眠呼吸暂停 心脏病学 内科学 重症监护医学
作者
R Y Zhang,Zhijuan Liu,Ran Li,Li Ai,Yongxia Li
出处
期刊:Nature and Science of Sleep [Dove Medical Press]
卷期号:Volume 17: 1049-1066
标识
DOI:10.2147/nss.s520758
摘要

Pulmonary hypertension (PH) is a common cardiovascular complication of obstructive sleep apnea (OSA), posing a significant threat to the health and life of patients with OSA. However, no clinical prediction model is currently available to evaluate the risk of PH in OSA patients. This study aimed to develop and validate a nomogram for predicting PH risk in OSA patients. We collected medical records of OSA patients diagnosed by polysomnography (PSG) from January 2016 to June 2024. Transthoracic echocardiography (TTE) was performed to evaluate PH. A total of 511 OSA patients were randomly divided into training and validation sets for model development and validation. Potential predictive factors were initially screened using univariate logistic regression and Lasso regression. Independent predictive factors for PH risk were identified via multivariate logistic regression, and a nomogram model was constructed. Model performance was assessed in terms of discrimination, calibration, and clinical applicability. Eight independent predictive factors were identified: age, recent pulmonary infection, coronary atherosclerotic heart disease (CHD), apnea-hypopnea index (AHI), mean arterial oxygen saturation (MSaO2), lowest arterial oxygen saturation (LSaO2), alpha-hydroxybutyrate dehydrogenase (α-HBDH), and fibrinogen (FIB). The nomogram model demonstrated good discriminative ability (AUC = 0.867 in the training set, AUC = 0.849 in the validation set). Calibration curves and decision curve analysis (DCA) also indicated good performance. Based on this model, a web-based nomogram tool was developed. We developed and validated a stable and practical web-based nomogram for predicting the probability of PH in OSA patients, aiding clinicians in identifying high-risk patients for early diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助俊逸绝音采纳,获得10
1秒前
大模型应助俊逸绝音采纳,获得10
1秒前
paradise发布了新的文献求助10
1秒前
早早入眠完成签到,获得积分10
1秒前
上官若男应助Judy采纳,获得10
1秒前
3秒前
3秒前
64658应助summer采纳,获得10
3秒前
李金奥完成签到 ,获得积分10
3秒前
4秒前
糖糖糖唐完成签到,获得积分10
5秒前
彭于晏应助花生酱采纳,获得10
5秒前
第一大咯噔完成签到,获得积分20
8秒前
cloud发布了新的文献求助30
8秒前
aktuell发布了新的文献求助10
9秒前
hhhh111发布了新的文献求助10
9秒前
10秒前
你不对劲007关注了科研通微信公众号
12秒前
12秒前
魏开铭完成签到,获得积分20
13秒前
15秒前
tqq发布了新的文献求助10
16秒前
谦谦神棍完成签到,获得积分10
16秒前
魏开铭发布了新的文献求助20
17秒前
LJ发布了新的文献求助10
17秒前
打打应助mmarj采纳,获得50
18秒前
清秀的小刺猬完成签到,获得积分10
19秒前
浮游应助猛犸采纳,获得10
20秒前
科研通AI5应助典雅的俊驰采纳,获得10
20秒前
英姑应助自由意志采纳,获得10
21秒前
光之战士发布了新的文献求助30
21秒前
长孙归尘完成签到 ,获得积分10
23秒前
meteor关注了科研通微信公众号
24秒前
26秒前
31秒前
22222发布了新的文献求助30
32秒前
健康的小鸽子完成签到 ,获得积分10
33秒前
34秒前
35秒前
哦哦耶耶应助zjf采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819360
求助须知:如何正确求助?哪些是违规求助? 4128316
关于积分的说明 12776236
捐赠科研通 3867831
什么是DOI,文献DOI怎么找? 2128420
邀请新用户注册赠送积分活动 1149229
关于科研通互助平台的介绍 1044981