Machine learning based association between inflammation indicators (NLR, PLR, NPAR, SII, SIRI, and AISI) and all-cause mortality in arthritis patients with hypertension: NHANES 1999–2018

医学 关节炎 内科学 炎症 联想(心理学) 重症监护医学 心理学 心理治疗师
作者
Kuijie Zhang,Xiaodong Ma,Xi-cheng Zhou,Gang Qiu,C. Zhang
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fpubh.2025.1559603
摘要

Background This study aimed to evaluate the relationship between CBC-derived inflammatory markers (NLR, PLR, NPAR, SII, SIRI, and AISI) and all-cause mortality (ACM) risk in arthritis (AR) patients with hypertensive (HTN) using data from the NHANES. Methods We employed weighted multivariable logistic regression and WQS regression to explore the relationship between inflammatory markers and ACM in AR patients, as well as to determine the weights of different markers. Kaplan–Meier curves, restricted cubic splines (RCS) and ROC curves were utilized to monitor cumulative survival differences, non-linear relationships and diagnostic utility of the markers for ACM risk, respectively. Key markers were selected using XGBoost and LASSO regression machine learning methods, and a nomogram prognostic model was constructed and evaluated through calibration curves and decision curve analysis (DCA). Results The study included 4,058 AR patients with HTN, with 1,064 deaths over a median 89-month follow-up. All six inflammatory markers were significantly higher in the deceased group ( p < 0.001). Weighted multivariable logistic regression showed these markers’ elevated levels significantly correlated with increased ACM risk in hypertensive AR patients across all models ( p < 0.001). Kaplan–Meier analysis linked higher marker scores to lower survival rates in AR patients with HTN ( p < 0.001). WQS models found a positive correlation between the markers and hypertensive AR patients ( p < 0.001), with NPAR having the greatest impact (70.02%) and SIRI next (29.01%). ROC analysis showed SIRI had the highest AUC (0.624) for ACM risk prediction, closely followed by NPAR (AUC = 0.618). XGBoost and LASSO regression identified NPAR and SIRI as the most influential markers, with higher LASSO-based risk scores correlating to increased mortality risk (HR, 2.07; 95% CI, 1.83–2.35; p < 0.01). RCS models revealed non-linear correlations between NPAR (Pnon-linear<0.01) and SIRI (Pnon-linear<0.01) with ACM risk, showing a sharp mortality risk increase when NPAR >148.56 and SIRI >1.51. A prognostic model using NPAR and SIRI optimally predicted overall survival. Conclusion These results underscore the necessity of monitoring and managing NPAR and SIRI indicators in clinical settings for AR patients with HTN, potentially improving patient survival outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尉迟明风完成签到 ,获得积分10
2秒前
可爱的香菇完成签到 ,获得积分10
2秒前
清爽笑翠完成签到 ,获得积分10
2秒前
5秒前
彪行天下完成签到,获得积分10
6秒前
生动的豪英完成签到 ,获得积分10
10秒前
20秒前
欢呼的茗茗完成签到 ,获得积分10
26秒前
珍珠火龙果完成签到 ,获得积分10
29秒前
qweqwe完成签到,获得积分10
31秒前
传奇完成签到 ,获得积分10
32秒前
CodeCraft应助白夜采纳,获得10
32秒前
星辰完成签到 ,获得积分10
34秒前
朴素海亦完成签到 ,获得积分10
35秒前
fsznc1完成签到 ,获得积分0
37秒前
WSYang完成签到,获得积分10
40秒前
SYLH应助bsmark采纳,获得10
42秒前
cdercder应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
47秒前
隐形曼青应助Nofear采纳,获得10
50秒前
白夜发布了新的文献求助10
50秒前
852应助林好人采纳,获得30
52秒前
ira完成签到,获得积分10
52秒前
子平完成签到 ,获得积分0
56秒前
56秒前
liao完成签到 ,获得积分10
56秒前
1分钟前
宫宛儿完成签到,获得积分10
1分钟前
谨慎的哈密瓜完成签到 ,获得积分10
1分钟前
Don完成签到 ,获得积分10
1分钟前
HHM发布了新的文献求助10
1分钟前
少年完成签到,获得积分10
1分钟前
1分钟前
彗星入梦完成签到 ,获得积分10
1分钟前
1分钟前
Nofear发布了新的文献求助10
1分钟前
gengfu完成签到,获得积分10
1分钟前
不吃芹菜完成签到,获得积分10
1分钟前
Nofear完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798537
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318485
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353