亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and Validation of a Prediction Model for Postoperative Fatigue Syndrome in Chinese Patients with Lung Cancer

列线图 接收机工作特性 医学 肺癌 预测建模 肺癌手术 多元分析 多元统计 单变量 外科 内科学 计算机科学 机器学习
作者
Peipei Huang,Yuxin He,Jingjing Shang,Yidan Sun,Hui Li,Qiuhui Wu,Sai Cao,Mei Li
出处
期刊:Western Journal of Nursing Research [SAGE Publishing]
标识
DOI:10.1177/01939459251325490
摘要

Background: Postoperative fatigue syndrome (POFS) is prevalent in patients with lung cancer after surgery but often overlooked clinically, affecting patient care and recovery. Predictive models for assessing the risk and severity of postoperative fatigue in persons diagnosed with lung cancer are lacking. Objective: To develop a predictive model for POFS in patients with lung cancer to address under-recognition and its impact on recovery. Methods: Data from 203 lung cancer surgery patients were analyzed through univariate analysis to compare the relevant factors between 2 groups . Least absolute shrinkage and selection operator regression were used to screen potential key predictors. Multivariate regression analysis was used to identify independent influencing factors and build a nomogram. Receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, accuracy, and clinical usability of the prediction model, with internal validation by the Bootstrap method. Results: Of the 203 patients, 57.1% developed POFS. The prediction model included 5 significant predictors: sleep quality, pain, activated partial thromboplastin time, forced vital capacity, and forced expiratory volume in 1 second/forced vital capacity ratio. The nomogram based on this model achieved an area under the receiver operating characteristic curve of 0.870, indicating good accuracy, with strong predictive power in internal validation. DCA showed clinical utility when the probability of POFS was above approximately 13%. Conclusions: We found a high prevalence of POFS in survivors with lung cancer and successfully constructed a comprehensive nomogram with 5 factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉德萌多林完成签到,获得积分10
1秒前
12秒前
小哈完成签到 ,获得积分10
26秒前
阿亮完成签到,获得积分20
26秒前
jnoker完成签到 ,获得积分10
40秒前
43秒前
阿亮发布了新的文献求助30
48秒前
冷傲的山菡完成签到,获得积分10
53秒前
烟花应助sy采纳,获得10
58秒前
1分钟前
zy卷发布了新的文献求助10
1分钟前
orixero应助麟龙采纳,获得10
1分钟前
1分钟前
chem完成签到,获得积分10
1分钟前
2分钟前
斯文败类应助科研通管家采纳,获得20
2分钟前
个性归尘应助科研通管家采纳,获得50
2分钟前
kytm发布了新的文献求助10
2分钟前
kytm完成签到,获得积分10
2分钟前
zy卷完成签到,获得积分10
2分钟前
2分钟前
merlin发布了新的文献求助10
2分钟前
2分钟前
3分钟前
WizBLue完成签到,获得积分10
3分钟前
麟龙发布了新的文献求助10
3分钟前
sy发布了新的文献求助10
3分钟前
猪猪完成签到 ,获得积分10
3分钟前
万能图书馆应助所谓伊人采纳,获得10
3分钟前
3分钟前
jkdi发布了新的文献求助10
3分钟前
麟龙完成签到,获得积分10
3分钟前
123完成签到,获得积分10
4分钟前
4分钟前
Gigi完成签到,获得积分10
4分钟前
陶兜兜发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833728
求助须知:如何正确求助?哪些是违规求助? 3376164
关于积分的说明 10492289
捐赠科研通 3095753
什么是DOI,文献DOI怎么找? 1704694
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792